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I. QUASI-NEWTON ALGORITHMS FOR CONSTRAINED NONLINEAR PROGRAMMING
(M. S. Bazaraa)

1.1 Introduction

Nonlinear programming has long been of interest to mathematicians,
engineers, and management scientists. Recent developments in the field
of nontinear programming, especially these related to computing a search
direction and to computing a stepsize, and the advent of the high-speed
and large-memory computers have made it possible to numerically solve
nonlinear programming problems of great complexity. This capability has
not only motivated immense research in the development of nonlinear pro-
gramming methods, but also expanded its applications to problems in
optimal control, optimal design, nonlinear networks, chemical processing,
refinery operations and water resources management.

The study of nonlinear programming methods is an area of prime interest.
This research concerns itself with the development of nonlinear programming
methods based on quadratic approximation of the objective function and
linearization of the constraints.

A nonlinear programming prc..eir can be stated as follows:

minimize f(x)

subject to xe$S

where f is a function defined on En, S is a subset of En, and x is an
n-dimensional vector. The function f and the set S are usually called the

objective function and the feasible region, respectively. A decision

vector x is called a feasible solution if xeS. The nonlinear program aims

at finding a feasible solution x such that f(x) zhf(i) for each feasible

point x. Such a point X is called an optimal solution to the problem.




The set S can be defined in terms of jnequality and equality restric-

tions leading to the following general constrained nonlinear program:

P: minimize f(x)
subject to g.;(x) <0, i =1,....m

hi(x)

[{]

0, i=1,...,¢

1

Each of the constraints gi(x) <0 fori=1,....m1is called an inequality

constraint and each of the constraints hi(x) 0 for i = 1,...,2 is called

an equality constraint. Most practical nonlinear programming problems have

the above form, and this research concerns jtself with quadratic approxima-

tion methods for solving this general constrained problem.




1.2 Quadratic Approximation Methods

In this section, we will briefly discuss the published literature on
quadratic approximation methods, commonly known as quasi-Mewton or Newton-
type methods. The basis of these methods is to successively form a quad-
ratic subprogram by linearizing the original nonlinear constraints around
a given point and replacing the objective function with a suitable quadratic
form. The optimal solution to the gquadratic subprogram is used to update
the current solution to the original probiem.

This class of methods was originally proposed by Yilson [1963] anc
further extended by several authors including Garcia and Mangasarian [1976],
Han [1976, 1977] and Powell [1978]. Perhaps the most important property
which is shared by these algorithms is the fact that tney enjoy a super-
Tinear rate of convergence in the vacinity of Kuhn-Tucker points that
satisfy second order optimality conditions. In {19771, Han was able to
show that the optimal solution to the quadratic problem is indeed a descent
direction to a suitable penalty function. Through the use of a line search,
he showed convergence of the sequence of iterates even if the starting solu-

tion is remote from a Kuhn-Tucker point, thus establishing glohal convergence.

[.2-1 General Description of the Algorithm

In this section, we will provide a general description of the quadratic
approximation algorithm for solving a general constrained nonlinear pro-

gramming problem of the form

P: minimize f(x)
subject to g.(x) <0, f=1,...,m
hi(x) =0, i=1,...,2




Each iteration consists of two major steps, namely, a direction finding step
and a line search step. In the direction finding step, a quadratic programming
subproblem is first formed. The solution to this quadratic program yields

a search direction. Once the direction is determined, a line search is
performed to produce a new point.

Suppose that at iteration k, the vectors xkeE“, uksEm, vkeEz

and an
nxn matrix Bk are given. The following steps are successively performed.

Direction finding step

A quadratic subprogram O(Xk,Bk) is formulated as follows:

t

Q(xk,Bk): minimize  vf(xX)td + % d'8, 9
subject to gi(xk) + in(xk)td <0, i=1,...,m
hi(xk) s Vhi(xk) d=0,i=1,....2

Note that the original nonlinear constraints are linearized arouna tne point

xk. let dk

be a solution of Q(xk,Bk). This vector will be called a search
direction or simply a direction. The dual vectors pk and ok are the Lagrangian
multipliers associated with the linear inequality and equality constraints
respectively, and will be used to update the Layrangian multipliers of the
original problem P. Note that the construction of the constraints forces

the direction dk to point towards the feasible region. Particularly, if

k) > 0, that is, if the ith inequality constraint is violated, then the

k)tdk

g, (x
ith constraint of the quadratic program will guarantee that in(x
< -gi(xk) < 0. Therefore, moving along dk will reduce the infeasibility

of the ith constraint of the original problem. Similar interpretation can

be given for equality constraints.




Line search step

Using a suitable descent function ¢, once the direction dk is deter-

mined, a line search along it is performed, resulting in a stepsize A and

a new point NULLL xkdk such that ¢(Xk+]) Ky.

of a Kuhn-Tucker solution, as will be discussed later, superlinear conver-

< &(x In the vicinity

gence is attained by simply letting Ak = 1. For the purpose of the next

k+1 k+] are replaced with pk and qk respectively. These

iteration, u and v
vectors can also be used to form the matrix Bk+1‘ as will be discussed
later.

The algorithm starts with a point x], which is not required to be
feasible. Under certain assumptions, the algorithm terminates ét a Kuhn-
Tucker point in a finite number of iterations or else generates an infinite
sequence {xk}, any accumulation point of which is a Kuhn-Tucker point. We
note that the generated sequence {xk} may not be feasible, thus deviating
from conventional feasitle direction methods as in the works of Zantendijk
{1960] and Topkis-Veinott [1967].

We note that a linearly constrained subprogram can be used in place of
the quadratic subprogram. The solution to the linearly constrained problem
js used as the next jterate point xk+1. We brinfly discuss below the linear

consirained programs proposed by Rosen and Kreuser [1972] and Robinson [1972].

Rosen and Kreuser's subprogram is as follows:

moy £
minimize f{x) + § uig.(x) + § vih.(x)
RS £ & i
i=] i=1
subject to gi(xk) + in(xk)t(x-xk) <0, i=1,...,m

gi(xk) + Vhi(xk)t(x-xk) =0, 1=1,...,2

The objective funciicn ic the Lagranaian function for problem P, and the con-
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straints are linear approximations to the original constraints.

Robinson used a slightly different objective function of the form:

m
Fla = L uKra, (0 - 0,06 - g, () Ex=x*))
1:
£
+ L vEIns () - h () - oh (K B e
1=

The main difference is that linear approximations to the original constraints
are subtracted from the Lagrangian objective function. When the original
problem is linearly constrained, the objective function proposed by Robinson
is eaquivalent to the original criterion function. This is not the case for
the method of Rosen and Kreuser unless, of course, u] = 0 and v] = 0.

Line search is usually used to control the canvergence of the generated
sequence {xk}. However, if the point K s sufficiently close to a solution

point x, the new point NUARLINENLIA dk satisfies || x K]

Sl < IxSx 0 so
that the distance function from x can itself be used as a descent function.
Henre the step size rule kk = 1 is useful in the vicinity of a solution
point. This rale has been used by Wilson [1963], Rosen and Kreuser [19717,
Robinson [1972], Garcia and Mangasarian [1976], Han {1976, 1977], and Powell
[1978]. if a starting point is far from a solution, the use of line search
is necessary to achieve global convergence.

Han (1977}, and Bazaraa and Goode [1979] used line search in the context
of quadratic approximation methods in order to maintain the monotonic decrease
of an exact penalty function.

We note that the algorithm under study can be thought of as an extension
of a certain class of descent algorithms for unconstrained optimization.
Particularly in the absence of constraints, and by choosing the descent func-

tion to be the objective function itself, various choices of EK lead to
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distinct methods. If Bk = 1, the alaorithm is the method of the steepest
descent. When the matrix Bk is taken as the Hessian of the objective func-
tion, the algorithm reduces to Newton's method. If upda*ting schemes are

used to approximate the Hessian of the objective function, then the algorithm

turns out to be a quasi-Newton method.

[.2-2 The Quadratic Programming Subproblem

In this section, we will discuss various methods proposed for forming

the quadratic programming direction finding problem. The linearization of
all constraints is the common property of these methods. However, various
objective functions for the auadratic program have been proposed by severa’
authors. Particularly the quadratic objecctive function at iteration k is

1

given by Vf(xk)td + 5 dtBkd, where Bk approximates the Hessian of the

objective function or the Lagrangian function
m
Lx,u,v) = f(x) + ]

In this section, we will discuss some methods for computing and ubdating

the matrix Bk' These include exact computation, finite difference apprcx-
imatior, and the use of quasi-Newton updates for the Hessian of the Lagrangian
function or the original objective function. Other choices ot interest are
identity and diagonal matrices.

Exact Computation of the Hessian

The matrix Bk is taken as the Hessian of the objective function 72

or the Hessian of the Lagrangian vxxL(xk,uk,vk) aiven by:

f(xk)

: m
VXXL(xK,uk,vk) = sz(xk) + .Z] u?Vzgi(Xk) +
i= i

It~ 0%
=
N




In {196+¢,, Wilson used the Hessian vxxL of the Lagrangian function and was

¢o.we to show superlinear convergence of the algorithm. One disadvantage

caused by this choice, however, is the requirement that the Hessian be
determined at each iteration k. This involves the evaluation of %;- (T+m+2)
scalar functions even if all gradient vectors are agiven. For most func-

tions this operation is very costly. If the Hessian VXXL(x,u,v) is relatively
easy to obtain and is positive definite, then this approach may prove attrac-
tive. Keeping in mind the difficulties associated with solving a nonconvex
quadratic program, several methods have been proposed to maintain positive

definiteness of Bk even if the Hessian VXXL(xk,uk,v‘) were not. In [1967],

Greenstadt suggested

where 51 = max {;a.f,:;, 3 is a positive scalar, a; is the ith eigenvalue of

koK
Ky

7 (X su,vT) and b, is its corresponding eigenvector with Hbi H=1. The

method of Levenberg-Marguardt is to let

- ko k ky L ooy
Bk = ”xxL(x WU o,V o)+ BI

where 2 is a positive scalar large enough to assure that Bk is positive defi-

nite. Ore particular implementation of this scheme is to attempt to use

Cholesky's factorization of 7XXL(xk,uk,vk) into the form LDLt, where L is a

Jower triangular matrix with ones on the diagonal and D is a diagonal matrix

with positive diagonal elements. If L(xk,uk,vk)

X is not positive definite,

the factorization would fail, but as described in Gill and Murray (1972}, a

factorization of a modified matrix Bk will be at hand. For other methods,




see Goldfeld, Quandt, Trotter [1966], Fiacco and McCormick [1968], Gill anz
Murray [1972), Mathews and Davies [1971], Fletcher and Freeman [1977].

Finite Difference Approximation of the Hessian

If obtaining the Hessian VXXL(x,u,v) or 72f(x) is relatively difficult,
a finite difference approximation to the Hessian can be used. This is done

as follows:

k
k k )

k k k
VXL(x +heiig V) - VXL(x s S )

(Byly5 = h

where h is a suitably chosen scalar, and ej denotes a unit vector whose ith
entry is one.

There is a significant amount of theoretical and computational support
for this approximation. For example, see Goldstein [1965], Stewart ({1967}
and Goldstein and Price [1967] and Dennis [1972]. The expense of computinc
%3 {1+m+2) scalar functions still remains and positive definiteness of Bk is
not guaranteed.

A technique to reduce the overall computational effort is to hold the
matrix Bk fixed for a certain number of iterations. This is practically useful
when the change of the Hessian is not significant. However, it is difficuit
to decide how iong the matrix should be held fixed. For details of this

technique, see Brent [1973].

Quasi-Newton Updates

To avoid calculating second derivatives, quasi-Newton updates have been

investigated by several authcors. The basic scheme is of the form:

Here Dk is called a correction matrix and is chosen to assure that Bk+1
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satisfies the quasi-Newton equation:
Bie1k = i
¢k
where Sy = xk+] - xk anc Yy = VXL(xk+],uk+],vk+]) - VXL(xP,u +1,vk+]). First,

we discuss updates for de. <2 and symmetric Hessian matrices. Later, we will

discuss updates for the sparse case.

Garcia and Mangasarian [1976]

Garcia and Mangasarian proposed a suitable update similar to those usad
in quasi-Newton methods for unconstrained optimization. They used an updating
mechanism for an (n+m+£) x (n+m+Z) matrix which approximates the Hessian of
the Lagrangian. The upper left n x n submatrix is used as the quadratic
form in the direction finding probiem. 7o be specific, the updating schame

is given below:

stty
- 9 t t kY k t
Hep = P * T sl G ) - )2 Cesis ki
Sk¥kSk Sk kSk
where
_k+1 k
S, = -z
zk - (xk,uk,vk)
- k+1 k
Yo sz(Z ) - VZL(Z ) - HeSk
5¢(0,1)
I if k+1 = 0 mod (n+m+g)
Chay =
c, - 9 C.s stC otherwise
k t k k™ k7k

SKkCkSk




n

The initiail matrices H] and C] are equal to the (1+m+{) x [n+m+{) identity
matrices. Since Bk is the upper left n x n submatrix of Hk’ the scheme seems
to be wasteful especially if the number of constraints is very large. Further-

more, it does not guarantee that the matrix Bk is positive semi-definite.

Han (1976]

As opposed to updating the overall Hessian of the Lagrangian, Han pro-
posed updating the Hessian VXXL(xk,uk,vk) only with respect to the vector x.
The updates are extensions of some well known double rank updates for uncon-

strained optimization problems. The general formula is given below:

t t ot :
_ (Y -Bysiey *+ oy -Bysi )™ sy -Bsy e e,
B,.. =B, + -
kel = By -t (cts )2
Kk Kk
where S = KK*T xk, Yy = VXL(xk+1,uk+1,vk+]) - VXL(xk,uk+],vk+]), and ¢,

1s any vector with CIESk # 0. Even though the above formula updates the
Hessian of the Lagrangian only with respect to the x vector, it has th:

disadvantage that it does not preserve positive definiteness.

Powell [1978)]

Powell presented a quasi-Newton update which preserves positive definite-
ness of the matrix Bk even if the Hessian VXXL(x,u,v) is itself not positive
definite. Powell's update can be thought of as an extension of the well

known BFGS formula given below.

t t
) Bis Sy By vy
8 =B, - +
k+1 k StBS St
Kk k Kk
where 5y = xk+] - xk and y, = VXL(xk+1,uk+1,vk+]) - VXL(xk,uk+1,Vk+])- If
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the matrix Bk is positive definite, then the matrix Bk+] is also positive
definite provided that styk > 0 holds. However, Powell pointed out that

sﬁyk > 0 may not be satisfied due to the negative curvature of the Lagrangian
function. Rather than using Hk in the third term of the BFGS formula,

Pawell used the vector gk which is a convex combination of Yy and Bksk.

The convex combination is chosen so that sték > 0 holds in all cases, thus

maintaining positive definiteness of Bk+1’ This update is aiven below.

t t
B,s,s,. B gkgk

_ kk k" k
Brs1 = By - fg < ¥ et
k"k7k k=k
where E =8yt (1-9) Bksk’ and
. t t
1 if s;y, > 0.25,/B,s
o - t Wk 2 Sk
0.2 s, B, s
—;;——iii%¥i- otherwise
KBS kS Kk

Sparse and Symmetric Updates

For sparse problems, the guasi-Newton updates discussed so far have
2

several drawbacks. First, because of symmetry, %T memory locations are

needed, which becomes impractical as n increases. Second, zero elements in
the Hessian of the Lagrangian will be approximated by generally nonzero
elements resulting from the updating formula. Finally, the update formulae
may w;ste a substantial computational effort in carrying out unnecessary
matrix and vector multiplications. Here we discuss sparse and symmetric
updates where the Hessian VxxL(x,u,v) of the Lagrangian function or the
Hessi.n of the objective function has a known sparsity pattern.

Let J be the set of indices denoting the positions of the known zero

entries of the Hessian and let K be the set of all indicies not in J.
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In {1977, 1978], Toint proposed the sparse and symmetric update given as
follows:
First the vector Ti» i=1,...,n is defined as follows:

K Af (1,0)eK
0 otherwise

An n x n matrix ¢ is formed using the vectors Ti's as follows, where éij is

the KY OnECke‘ dE]ta.
Q,. = T..7T,.. +”T. ” '6.. i = ] n j“— ] . ,N
.IJ 'IJ 31 i .lJ’ 303y LA

Note that ¢ satisfies the sparsity conditions, and is symmetric and positive
definite provided that none of the vector Tso i=1,...,k is identically zero.
Then .

0 if (1,3)ed

B'S§ + 5.53 + (B otherwise

k)ij
where the vector 8 is

g =07 (y*-8,s%).
Note that the above update satisfies the Quasi-Newton eauation. See Schubert
{1970] for an update of the Jacobian matrix for nonlinear systems of equatians.
The intereste reader may refer to Goldfarb [1970) for an update based on

the Cholesky decomposition, Marwil [1978] and Shanno [1980] for an update

based on Greenstadt's [1970) variational method.
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Special Choices of Bk

Here we will consider two special choices of Bk' When Bk is chosen to
be the identity matrix, the subprogram Q(xk,Bk) is equivalent to the problem
of finding the least distance from the point - Vf(xk) to the feasible region
of the direction-finding problem. Several authors have provided efficient
methods to handle this special problem. For example, see the survey paper
by Cottle and Djang {1979]. Here we may expect that the direction dk pro-
duced by Q(xk,I) would be inferior to the direction produced by O(xk,Bk)
around the solution x. However, the subprogram O(xk,I) has some advantages.
One principal advantage is that this program is usually much easier to solve
than Q(xk,Bk). Another factor is the fact the program Q(xk,Bk) yields super-
linear convergence only in the vicinity of a solution point X, but actuaily
has no theoretical advantage in early stages of the optimization process.
The use of the program Q(xk,I) can be interpreted as an extension of the
steepest descent method for unconstrained optimization.

Another choice is that each Bk is taken as a diagonal matrix whose
diagonal entry approximates the Hessian of the Lagrangian function or the

objective function by finite difference methods. To be specific, let

{ V L(x 'lle-,U ,V )‘ - V L(X ,U ,V )- }
max ],

h

i=1,...,m

where h is a suitably chosen positive number and e; denotes an n-dimensional
unit vector whose ith entry is one. Ve note that the (1+m+£) aradient vectors
are evaluated to produce the diagonal matrix at each iteration. Note that

the matrix B, is positive definite, andf{BkH and[[Bk'][{are both bounded

if the gradient vectors are bounded. QOther choices for the diagonal matrix

o will he investiqated.

.




[.2-3 Feasible Region for the Quadratic Program

Here we let. S be the feasible region of problem P. That is,
S = {x| g5(x) <0, 1=1,....m, hi(x) =0, 1= 1,...,2)

We assume that S is nonempty and that gi('), i=1,...,mand hi(')’ =1,
are continuously differentiable. Let S(xk) denote the linearization of the
set S at the point xk so that

Ky ¥

x-xk) <

S(x*) = {x] g;(x*) + v, (x

h.(xk) k)

kit
; + Vhi(x (x-x

Note that the feasible region of the gquadratic program Q(xk,Bk) is nonempty
only if §(xk) is nonempty. If the Tatter is empty, then the quadratic program
js inconsistent and the quadratic approximation algorithm will stop prematurely

This point is illustrated by the following exampie.

Example 1: minimize x] + x2

subject to h](x) = x% + xg -2=0
erz

Note that the feasible region of the problem is nonempty and that the optimal

solution x is (-1, —I)t.

)t

Let Bk = I and consider the quadratic subprogram

at the point xk = (0,0) " given below:

e s 3 2.2
minimiz» (d]+d2) t (d]+d2)

subject to -2 =20
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Clearly this problem is inconsistent and would result in premature termina-
tion of the algorithm.

In the vicinity of a Kuhn-Tucker point satisfying the second order
sufficiency optimality conditions, the region g(xk) is nonempty. If the
point xk is feasible, the region g(xk) is indeed nonempty because d = 0 is

k is infeasible and remote from the solu-

feasible. However, if the point x
tion point, we must provide a resolution to the case where the region S(xk)
is empty. Han (1977] provided a sufficient condition to assure that the

region S(xk) is nonempty. The result is summarized in the following lemma.

Lemma 1

Let ;s i=1,...,m be continuously differentiable and convex, and
hi» 1= 1,...,£ be affine. If the set {x| g.(x) <0, hi(x) =0, 1=1,....m,
i=1,...,2} is nonempty, then g(xk) is nonempty for any xkeEk.

Clearly, this sufficient condition is very restrictive. Bazaraa and
Goode [1979] introduced artificial variables to prevent the constraint set from
being empty. Through the use of a penalty term, these artificial variables
will be equal to zero, unless of course the region g(xk) is itself empty.
This quadratic program is given below:

k

m £
D(x",8,): minimize 7#(x*) b +‘Edtskd try Yoyer T (204 zf).]

subject to g-(xk) + Vg-(xk)td <y
i i -

-i’
hi(xk) + Vhi(xk)td = 7. - z;, i 1, L
Y; >0 , 1 =7,...,m
2{ > 2] >0 i=1,....2
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where r is a sufficiently large positive number. The introduction of the
artificial variables Yio z; and z; assures that the feasible region of
D(xk,Bk) is maintained nonempty. However, we will show through a simple
example that quasi-Newton updates of Bk are inadequate in this case unless

some additional considerations are taken into account.

Example 2: We will reconsider Example 1.

minimize x] + x2
subject to xf + xg - 2=0
xeX2

Let the point xk = (O,O)t and Bk = 1. Then we get the quadratic program

D(kak) given below:

- N

+ds + r(y

[AS AN

minimize d] + d2 + d

subject to - 2=y -y

<
"
o
<
]
o

The Lagrangian multiplier g associated with the linear equality constraint is
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Note that the Lagrangian multiplier U = % at the optimal solution x = (-1,-1)%.

If r is sufficient]y‘1arge, the estimate q of the Lagrangian multiplier
is unnecessarily large. The Lagrangian function will thus be

L(x,q) = x| F Xyt r(x$+x§-2)

which means that a big penalty is imposed on the constraint because it was
inconsistent at the point xk = (0,0)t. The unnecessarily large number q
may result in il1l-conditioning of the next iterate dk+1 like penalty function
methods. We note here that the choice of Bk in Bazaraa and Goode (1979) does
not depend on the estimates of the Lagrangian multipliers. Vhen an update
of Bk is applied,one approach 1s to keep the values of the lagrangian multi-
pliers corresponding to the inconsistent constraints fixed rather than
replacing them with the Lagrangian multipliers produced by the quadratic sub-
program D(xk,Bk). In this study, we will investigate the subprogram D(xk,Bk)
further.

Another approach is to eliminate some inconsistent constraints. Let
1K) = {11 lvg, 0L # 0F and 9(x*) = ] 19 (x*) | # 0}. Then we have
the following linear system to represent the feasible region of the quadratic

subprogram Q(xk,Bk)

gi(xk) + Vgi(xk)td <0, feI(xk)

t k

1,
h (xX) + oh.(x)td = 0, 1e3(x¥)

1 1

We will investigate some sufficient conditions to guarantee that the above

system is not empty.
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1 7-4 Updating the Lagrangian Multipliers

In this section, we will discuss updating the Laarangian multipliers.

k+1 k+1

The estimates u and v of the Lagrangian multipliers may be used to

determine the matrix B if Bk+1 is chosen to approximate the Hessian of

k+1
the Lagrangian function. Here we will discuss the updating scheme employed
by most authors and then discuss some variations to be investigated further.

The most popular updating scheme is given below:

k+1 k
U

and vk+] = qk

where pk and qk are the Lagrangian multipliers obtained from problem

Q(xk,Bk). Note that since pk > 0, the nonnegativity of uk+] is automatically

maintained. This scheme has a certain advantage that if the sequence {xk}
converges to a Kuhn-Tuck2r point X, the estimates uk and vk converge to the
vectors u and v of the Lagrangian multipliers, respectively. Under this
method, the dual solution (pk,qk) may cffect :che numerizal stability of the

matrix B If the length of the vector (pk,qk) is unnecessarily large,

k+1°

the next iterate B may suffer from ill-conditioning. This situation may

k+1
arise if Q(xk,Bk) is inconsistent and if the search direction is obtained
by solving D(xk,Bk) as explained in Example 2 in Section I.2-3.

Han [1977] presented a sufficient condition that the «-norm of the dual

solution (pk,qk) is bounded by a certain positive number. The result is

summarized in the following theorem.

Theorem 1
Let f and 95> i =1,...,m be continuously differentiable, ;> i=1,...,m
be convex, and hi’ i=1,. ,£ be affine. Suppose that the feasible region of

]
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the original problem P is nonempty. Further, suppose that the matrix Bk

satisfies the following condition:

silid 2 < a8 < s, all? for any deEX, for a1l k

Then there exists r > 0 such that if (pk k)

,q ) is a dual solution to O(xk,Bk)

then the «~-norm of the dual solution (pk,qk) is bounded by r for each k.
The sufficient condition seems restrictive mainly because of convexity

of the inequality constraints and linearity of the equality constraints.

Since the number r is unknown a priori, there still remains the possibility

of i1l-conditioning of the matrix B, if r is sufficiently large.

3

Revising the Updating Scheme

Let dk be a solution to Q(xk,Bk). Then the dual vector (pk,ok) solves

the foilowing system:

2
Ky .no4k . %k Ky _
vf(x") + B d" + igl P;7g; (x7) + 'g q;vh.(x7) = 0

j=1

pi(gi(xk) + ng(xk)tdk) =0, i=1,...,m

p. >0 i=1,...,m

Note that the system may not have a unique solution. In particular, we are
interested in finding a solution (pk,qk) with minimum «-norm to prevent the
possibility of il1l-conditioning of the matrix Bk+1‘ Furthermore, we will

investigate other updating rules. One such rule is:

K+ k
u; 2 max {0, uy + 6gi(xk+7)}
k+1 _ Kk k+1
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where § is a suitably chosen positive number. This method can be inter-
preted as a subgradient optimization scheme where a fixed step along the
subgradient (g(xk+]),h(xk+])) to the Lagrangian function is taken, and

then forcing any negative components of the lagrangian multicoliers of the

inequality constraints to be equal to zero.

1.2-5 Local Convergence

One of the key advantages of gquadratic approximation methods is the
fact that they enjoy a superlinear rate of convergence in the vicinity of
a Kuhn-Tucker point satisfying second order sufficiency conditions. In this
section, we will discuss the major results and assumptions which guarantee
superlinear convergence.

First, we review the second order sufficiency condition which was first

studied by Fiacco and McCormick [1968].

Definition
A Kuhn-Tucker triple (Xx,u,v) of problem P satisfies the second order
sufficiency conditions if the following conditions are simultaneously satisfied:

(1) ;0 if fel(X), where 1(x) = {j} g (%) = 0}.

(ii) The set N, the collection of the gradient vectors ti(i), iel(x)

and Thi(i), i =1,...,2, is linearly independent.

(ii1) The Hessian ?xxL(E) is positive definite on the tangent subspace

T =yl y¥ = 0, den}.
Local convergence can be established through the use of a contraction
mapping defined on a sufficiently small ball BE(Z) = [z} 1 z-z" < ¢} such

that
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2Tz < 2Ry

where z denotes a Kuhn-Tucker triple satisfying the second order s fficiency
conditions. The following theorem summarizes the main local converaence

result of the algorithm.

Theorem 2

Let z = (x,u,v) be a Kuhn-Tucker triple of problem P. Suppose that z
satisfies the second order sufficiency condition, and that f, ci,(i=],...,m),
(i=1,...,2) have a second derivative which is Tipschitz continuous at the

point x. Then for r=(0,1), there exist oositive nuibers e and % such that
- k k k
Koo )

if ffzk-EH < ¢ and ' Bk-TXXL(z)W < Z at the point z X ,U ,V ), there
1 L
exists a closest solution (dk,uk+1,vk+‘) of O(xk,Bk) to (O,uk,v“) such that
12z < e 2

where zkH = (xk+dk,uk+],vk+1).

Procf

See Han [1976].
We note that the theorem holds only when zk and Bk are sufficiently

3] k‘*‘]

- - . . . - k
cleose to z and TXXL(Z), respectively. Obviously, since | z° "-zil<rlz

-zl
the convergence is guaranteed. However, as we will discuss later in the
section, a fast rate of convergence characterized by superlinear convergence,
1s actually realized.

For the discussion of the superlirear convergence, we present the following

definitions of linear and superlinear convergence.
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Let {zk} ccaverge to z. Then the sequence {zk} is said to converge
linearly if there exists an r=(0,1) and kO > 0 such that
| Zk+]_

zll < rl zk-EH for all k > kg

If there exists a sequence {yk} convergent to zero such that

then the sequence {zk} is said to converge superlinearlv. If {z,} converces
superlinearly to z, then
Ny
SR
provided that zk # z. However, the converse is not true. For more detaiis
on superlinear convergence properties, refer to Dennis and More [1974, 1977)
and Ortega and Reinbol4t [1970].

To obtain the linear and superlinear rate of convergence, several sutfi-
cient conditions have been provided. The conditions are mainly based on the
absolute and relative error of approximations to the Hessian, measured by sore
fixed matrix norms. A sufficient condition for the linear rate of convercence

is that ! B,-7, L(z)!} < 8. Here |l. || denote any fixed matrix norm and £ is

X
a sufficiently small positive number. The interested reader may refer to

Garcia and Mangasarian [1976], and Han [1976]. A sufficient condition for the

superlinear rate of convergence is that

s ! k .
i B LEN G ) =O

C o k+1 kg
ffz7 -z

k-bc\')
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This condition is credited to Han [1976]. For similar conditions, refer to
Garcia and Mangasarian, and fowell [1978). We note that if || Bk—VXXL(Z)H
converges to zero, then the sequence {zk} converges superlinearly to 2.

The reader may easily note that the methods of Wilson [1953], Robinson (1972]
and the finite difference procedure are superlinearly convergent because

Tim ] Bk-VXXL(E)H = 0. However, the condition Tim || Bk-vxxL(Z)H = 0 is not

k<o k-»c0

necessary for superlinear convergence.

[.2-6. Global Convergence

In this section, we will discuss aglobal convergence of quadratic approx-
imation algorithms employing line search. As mentioned before, in the vicinity
of a Kuhn-Tucker point which satisfies the second order sufficiency condition, t
distance function from the Kuhn-Tucker point can be used as a descent function,
thus establishing convergence. 1If a starting point is remote from the Kuhn-
Tucker point, a line search scheme employing a suitable descent function is
needed to achieve convergence. The choice of descent functions and their

convergence results will be discussed in this section.

An Exact Penalty Function

A successful descent function is the penalty function ¢r(x) of the form

¢ (x) = f(x) +r ? max{C.g:(x)} +
r i=1 ! i

e~

] U\-Ml}

The parameter r will be called an exact penalty parameter. The function was

first used as a descent function in the context of quadratic upproximation




25

methads by Han (1977). In [1979], Bazaraa and Goode simplified their minimax
algorithm to directly handle the penalty function problem to minimize ¢r(x).
The algorithms of Han and Bazaraa and Goode are discussed below. Both algo-
rithms are globally convergent in the sense that each accumulation point of
the seguence {xk} is a Kuhn-Tucker point. Both algorithms have the form

xk+1 = xk + xkdk, where dk is obtained from solving a quadratic program and
xk is cbtained by a suitable Tine search scheme. Han {1977] showed that the
direction dk obtained from the quadratic programming problem Q(xk,Bk) is
indeed a descent direction for the exact penalty function. The line search

k

along the direction d° is performed as follows:

xk+]) < min ¢r(xk+kdk) t g

- 0<A<$§

9.

where & is a prescribed positive number and €k is an error term allowed for

the line search such that

We note that since the function ¢r(x) is nondifferentiable, derivative-based

search methods cannot be applied directly.

Bazaraa and Goode [1979]

Their algorithm was originally designed to solve minimax problems. Hence
the algorithm can be specialized to solve the exact penalty function. The

corresponding quadratic subprogram D(xk,Bk) is of the form
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. m £
D(xK,Bk): minimize vf(xk)td +r [ R 2R ) (z;+z:)] + %»dtB d
j= =)

subject to g.(xk) + VQi(x

~—
+
L
=
-ty
—
>
x
~—
t
a
i
N
1
~N
»
—t
1]
—
-
»
o]

Note that each subprogram D(xk,Bk) has a nonempty feasible region. They

specialized Armijo [1964) search rule under the assumption that f, 955

i=1,...,m, and hi,i = 1,...,4,are upoer uniformly differentiable. Each
xk is determined by:

m
3 K

1
k = \2

where my js the smallest nonnegative integer such that

m m, +i
8. (x () ¥d*) <o () + () K wre (xK,d9)
where
m £
v (x,d) = or TR m( Ty v T (2T42D)
r A L i %
i=1 i=1
m K ¢ K
-r _Z] max{0,g. (x )} o+ -Z] [h; (x )
1: 1:

The two algorithms can be interpreted as an exact penalty function method

which attempts to solve a single unconstrained penalty function ¢r(x), resultinag
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in a solution to problem P. This exact penalty function approach was first
introduced by Fletcher [1970) who transformed the original problem into a
completely unconstrained program. The basic idea is that if x is a Kuhn-
Tucker point to problem P, there exists a number r such that x is a local
optimal solution to the problem to minimize ¢r(x) for all r 3.F. The lower
bound r is estimated by the Lagrangian multipliers. For a review of exact
penalty functions, the reader may refer to Pietrzykowski [1969}, Evans, Gould
and Tolle [1973], Howe [1973], Conn [19731, Conn and Pietrzykowski [1973],
and Fletcher [1975]. For the existence of a globally exact penalty function
in the convex case and in the nonconvex case refer to Bertsekas [1975], and

Bazaraa and Goode {1979], Han and Mangasarian [1979].
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1.4 Summary of Completed Research

In this section, we briefly summarize the major findings of the
research completed thus far. A detailed description is given in the
Appendix which reporduces the following papers:

1. M. S. Bazaraa and J. J. Goode, "A Globally Exact Penalty Function

Without Convexity," submitted to Mathematical Programming.

2. M. S. Bazaraa and J. J. Goode, "An Extension of Armijo's Rule to
Minimax and Quasi-Newton Methods for Constrained Optimization,"

submitted to Journal of Optimization Theory and Applications.

3. M. S. Bazaraa and J. J. Goode, "An Algorithm for Linearly Con-

strained Nonlinear Programming,"Journal of Mathematical Analysis

and Applications, to appear.

Globally Exact Penalty Functions

It is well known, under a suitable constraint qualification, that if x

is an isolated local optimal solution to the problem:

minimize f(x)

subject to gi(x).g 0 fori=1,...,m

then there exists a number AO so that x is a Jocal optimal solution to the
problem:
m

minimize f(x) +x }

max{O,gi(x)}
i=1

for all A > >O' Unfortunately, however, in the absence of convexity, the

above result does not hold qlobally.
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In this paper we show, under mild conditions, that if a compact ccnstraint
set X is added to the constraints 91(X).i 0 for i = 1,...,m, then the set of
global optimal solutions to the original problem and the set of global optimal
so]gtions to the penalty problem, for a sufficiently large penalty parameter
A, are equivalent. In order to prove this result, we use the fact that a
family of relatively open sets that cover X must have a finite subcover. An

estimate of the size of the penalty parameter is also given.

Minimax and Quasi-Newton Algorithms

An algorithm for solving a minimax problem over a closed convex set is
deve.oped. Using a newly developed continuous pseudo-directional derivative,
a direction is found by minimizing a positive-semidefinite auadratic program
over the feasible reqion. A step size is then computed using an extension of
Armijo's inexact Tine search.

The algorithm is specialized to both unconstrained and constrained non-
linear programs. For the unconstrained case, various steepest descent and
quasi-Newton methods are produced through different choices of the quadratic
form. Using an exact penalty function to handle the nonlinear constraints,
the direction-finding problem reduces to a convex quadratic programming pro-
blem. Unlike other available direction-finding routines that linearize the
nonlinear constraints, our program is always feasible. A suitable step size
is then found using Armijo's rule. It is shown that accumulation points of

the algorithm are indeed Kuhn-Tucker points to the original problem.

Algorithm for Linearly Constrained Nonlinear Programs

Here an algorithm for solving a linearly constrained nonlinear program

is developed. Given a feasible solution, to avoid jamming, binding and near
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binding constraints are identified. A direction is calculated by solving
a least distance programming problem which is defined in terms of the
gradients of these constraints.

Once a direction is found, an estimate of the step size, using quadratic
approximation of the objective function, is first computed. This estimate is
then used in conjunction with Armijo's inexact line search to calculate a new
point. It is shown that each accumulation point is a Kuhn-Tucker solution
to a slight perturbation of the original problem. Under suitable second order
optimality conditions, we show that eventually one functional evaluation is

needed to compute the step size.
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IT. GENERIC OPTIMALITY CONDITIONS AND NONDIFFERENTIABLE OPTIMIZATION
(J. Spingarn)

11.1 Introduction

Our research during the period covered by this contract has centered
on two themes, both within the compass of matnematical programming: generic

optimality conditions and nondifferentiable optimization.

II.1-1 Generic QOptimality Conditions

Qur work on generic conditions continued the investigation that was
begun in Spingarn and Rockafellar [5]. In that paper, it had been shown

that for almost all (v,u)sRn+m

, at every local minimizer for the problem
Q(v,u) minimize f(x) - x.v over all xeR"

satisfying g.(x) <u, for all i=1,...,m
i -

the so called "strong second-order optimality conditions" hold (assuming that
the functions f and g; Possess derijvatives of sufficiently high order). In
this sense, the strong second-order conditions are "generically" necessary
for (local) optimality with respect to the class O(v,u).

When studying questions of genericity, the precise class of problems
to which the results apply is crucial. The family Q{v,u) is only one example
of a family for which the conditions are generic. So the question naturally
arises: For what other families will the strong second-order conditions,
or similar conditions, be generically necessary for optimality? This is the

question addressed by our recent work on generic conditions. Our principal
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accomplishment in this direction has been to obtain an easily verifiable
criterion which ensures the genericity of the conditions.

In some circumstances, we found that it is necessary tec modify the
strong conditions themselves. This situation occurs when the family includes
both "fixed" and "variable" constraints. "Fixed” constraints are those that
do not vary with the problem parameters, while "variable" constraints do.

The exact manner in which the generic conditions depend on the fixed

constraints is also described by our results.

[11.1-2 Nondifferentiable Optimization

If f: R™R is a locally Lipschitz function, the generalized subdifferential

of f is the set-valued mapping 5f: R™>R" defined by taking 3f(x) to be the
convex hull of the set of all limit points of sequences of the form (vf(xn)),
where X and f is differentiable at X (This definition is due to F.
Clarke [9]). If f happens to be convex then 3f(x} is just the set of
"subgradients" of f at x, i.e., the set {5: f(z) - f(x) > <g,z-x> stRn}.

When the generalized subdifferential was first studied, the motive was
to provide a tool that would be of usc in handling optimization problems in
which a function which is neither convex nor differentiable is to be minimized.
Most algorithms for solving constrained or unconstrained minimization problems
make heavy use of derivatives or, in the nondifferentiable but convex case,
of subgradients. To generalize such algorithms to a broader class of func-
tions, it is necessary to have a substitute; hence the need for the generalized
subdifferential.

Qur work in this area has concentrated on the relationship between certain
properties of nondifferentiable functions and properties of their generalized

subdifferentials. The basic goal has been to identify subclasses of functions




which are both likely to arise in optimization problems and whose subdiffer-
entials posess properties which are likely to facilitate the development
of algorithms.

OQur principal achievement in this direction has been to characterize
the class of “lower-C]“ functions in terms of their subdifferentials.
Lower-C] functions are a desirable class of functions to study because of
the patural way they arise in optimization problems. Anytime a function is
obtained by maximizing in one argument a second function of two arquments
(e.g., f(x) - max g(x,s) one obtains a 1ower-C] function, provided the
second functionshas a continuous derivative and the maximum is taken over
a compact set. Such functions arise in decomposition schemes for mini-
mizing a function of two arguments.

The most remarkable feature of our characterization of 1ower-C] func-
tions is that the corresponding property of the subdifferential mapping is
so closely related to the "monotone" property that characterizes the sub-
differential of a convex function. Because of this resemblance, we have
coined the word "submonotone" for the related property. The close resem-
blance is more than a curiosity. There is reason to hope that the simi-

larity will facilitate the transfer to nondifferentiable optimization of

algorithms originally intended for convex programming.
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[I.2 Research and Publications Summary - Generic Conditions

The results of our work in this area form the basis for two articles:
"On optimality conditions for structured families of nonlinear programming

problems" (submitted to Mathematical Proaramming) and "Second-order opti-

mality conditions that are necessary with probability one” (to appear in

Proceedings, Symposium on Mathematical Programming with Data Perturbations,

George Washington University, May 1979). The latter article is a survey
without proofs of all our research on this subject to date, while the
former contains the main results and their proofs.

We investigated problems of the general form indexed by a parameter

peP, with PCIRe an open set:

Q(p) minimize f(x,p) over all xeCCR"
satisfying gi(x,p) <0 for all i=1,...,m, and

hj(x,p) =0 for all j=1,...,k

This class is more general than 0(v,u) in two important respects. First,
the manner in which f, 9; and hj depend on the parameter is given more
freedom. Rather than requiring perturbation of a special type (e.g., linear
perturbations of the objective function and right-hand-side perturbations of
the constraints), we only required that the family 0(p) satisfy a general
criterion. Second, in addition to the constraints 9; < 0 and hj = 0, which
we refer to as the "variable" constraints, we also investigated the effect
of the "structural" or "fixed" constraint xeC that does not vary with p.

The distinction between these two types of constraints is important because

the two types play different roles in both the analysis of the conditions




and in the statement of the conditions themselves: the conditions that
turn out to be generically necessary for optimality depend on the parti-
cular class of problems under consideration.

Qur principal accomplishment here was to give appropriate criteria
for the family Q(p) which guarantee the genericity of the second-order
conditions, and also to describe the form of the second-order conditions
and how they depend on the fixed constraint set C.

In order to duscuss second-order conditions, we found it necessary to
make certain second-order regularity assumptions about the set C. The
conditions that we imposed on the set C were incorporated into our defini-
tion of "cyrtohedror". Cyrtohedra, which we introduced in [4], are piecewise
smooth sets that can be represented locally be a finite number of nonlinear
inequality and equality constraints. A cyrtohedron is a union of submani-
folds, called the "faces" of C, and each xeC belongs to a unique such face.
In a natural way, with each xeC, we can associate the normal cone Nc(x) to
C at x, and the tangent spact at x, LC(x), to the face containing x.

The second-order conditions which we showed to be generically necessary

for optimality are the generalized strong second-order conditions discussed

previously in Spingarn [4]. P triple (i,y,i)erRTka is said to satisfy
these conditions for the problem Q(p) if
(SS0C) (i) x is feasible for Q(p)
(i) -VXL(i,y,i,p) relint Nc(i), where L is the usual
Lagrangian, and "relint" denotes relative interior
(ii1) y; > 0 iff g.(x,p) = 0, for each i
(iv) The projections onto LC(R) of the gradients of the
active constraints are linearly independent
(v) 1If F is the face of C containing X then vi(LIF)(i,},E,p)(s,s) > C
for all szR" satisfying 0 # seLC(i), s perpendicular to the

gradients of the activa constraints.
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The family Q(p) is full provided the function p1r+ V’ y ZL(x,y,z,pT) has

Jacobian of full rank at all (x,y,z,p)sCxRTkaxRﬁ {

where L(X ,_Y,Z,p) =
f(x,p) + Ly;9;(xsp) + szhj(x,p) is the usual Lagrangian). Our main result

is the following:

Theorem 1

Let C C R" be a d-dimensional cyrtohedron of class CS, f of class Cz,
and g and h of class ¢S on R"xP with s > max{1,a-m}. If Q(p) is full, there
is a subset POCZ P with P/P0 having measure zero, such that for all 5eP0:

if %eC is a local minimizer for Q(p) there exists (y,E)ERTka satisfying SSOC.
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I1.3 Research and Publications Summary - Nondifferentiable Optimization

We have published our results from this line of work in “Submonotone

subdifferentials of Lipschitz functions” (to appear in Trans. Amer. Math. Soc.).

f: R" >R s a 1ower~C] function if every xeR" has a neighborhood U such

that for all xeU, f(x) = max g(x,s), where S is some compact set and g and
seS

ng are continuous jointly in x and s. If f is a locally Lipschitz function

R" R, we say that 3af is strictly submonctone if for all xeRn,

X: > X
yisaf(x.)
= 1]

i
i 22

Qur principal result is the following

Theorem 2

f is 1ower—C] iff 3f is strictly submonotone.
Notice the close relationship between strict submonotonicity and monotonicity.
The latter property clearly implies the former since if 3f is monotone, the
numerator in the "lim inf" above is always nonnegative.

We also investigated the property of "submonotonicity", which is
stronger than strict submonotonicity, but weaker than monotonicity. 3f is

submonotone if for all xaRn,
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<x]-x, y]-y> .0

Tim imf
X > X
X £ X
yedf(x
y]aaf(x

—_—

)

In terms of the function f, we showed that the submonotonicity of 3f
corresponds to a certain "regularity" property of the directional deriva-
tive of f. We also proved several results which relate submonotonicity to
properties that have been studied by other authors, such as semismoothness
(Mifflin [71), lower semi-differentiability (Rockafellar [6]), quasi-
differentiability (pshenichnyi {8]), and Clarke regularity {10]. For

instance, we showed that 3f is submonotone if f is both semismooth and

Clarke regular.
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In this paper, we consider the nonlinear programming problem to
minimize f(x) subject to gy(x) < 0 for i = 1,...,m and xeX. If X is
compact, we show under a suitable constraint qualification that a
globally exact penalty function exists. Particularly, we show a
one~-to-one correspondence between global optimal solutions to the
original problem and global optimal solutions to the penalty problem
for a sufficiently large, but finite, penalty parameter. A lower
bound on the penalty parameter is established in terms of the Kuhn-
Tucker Lagrangian multipliers and lower bounds on the functions
involved.
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l. Introduction

A great deal or attentiun has peen givew tu tite ouuvject Of cxart renalty
functions where a constrained nonlinear programming problem is transformed
into a single unconstrained problem or into a finite sequence of uncon-
strained problems.

Without convexity, the current theory applies only locally. Specifically,

if x is a strict local minimum to problem P, to minimize f(x) subject to

0
gi(x) < Q for i =1,...,m, under a suitable constraint qualification, there
exists a number AO such that x is a local optimal to the problem to minimize
9(x,A) for all A 3_x0, where 8(x,\A) is an appropriate penalty function.
For a review of exuact penalty functions, the reader may refer to Evans,
Gould, and Tolle [4], Fletcher [5], Han and Mangasarian [8], Howe [9],
McCormick [11], and Pietrzykowski [12,13]. For the existence of a globally
exact penalty function in the convex case, see Bertsekas [3] and Zangwill
[15].

The main result of this paper is to show, under mild assumptions, the
existence of a globally exact penalty function in the nonconvex case.
Before proceeding, it is worthwhile to briefly review the cases under which
an exact penalty does not exist. In this regard, consider problem P, and

0
let gi(x)+ = max {O,gi(x)}. Given the penalty parameter A, the penalty
m
problem is to minimize 6(x,A) where 8(x,X) = f(x) + A } g, (x) . Figure 1 shows

i=1
for m=1, the set A = {(gl(x)+,f(x)): xeRn}. It is clear that if x solves
0’ then there exists a AO so that x also solves the penalty pro-
blew to minimize €(x,X) for all A > A

problem P

0 if and only if there is a nonver-
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tical supporting hyperplane with slope —AO, to the set A at the point
(gl‘§)+,f(§)). In Figure la, such a supporting hyperplane exists, whereas
in Figures 1lb and lc, a globally exact penalty function does not exist. The
case illustrated in Figure 1b can be easily overcome by the stipulation of a
suitapie constraini quailrlcazlon of the wkind that is needed to validatc

the Kuhn-Tucker conditions.

If we modify problem P . so that a compact set X is included in the

U
constraints yielding the compact set A' ~ {(g; () ,£(x)): xeX}, as shown

in Figure 1d, a supporting hyperplane can be found.

In this paper we consider the following problem:

Problem P: minimize f(x)

subject to g.(x) < 0 for i =1,...,m
] g5 <

xeX

We think of the constraints defined by X as easy constraints that must be

handled explicitly and of the constraints gi(x)_i 0 for i =1,...,m as

those that are treated by a penalty function. Typically, X contains lower ,
and upper bounds on the variables, and possibly linear constraints. As

discussed above, we prove that if X is compact and under a suitable con-

straint qualification, a globally exact penalty exists. The penalty pro-

blem under consideration is:

Problem P(X): minimize B(x,A)

subject to xeX

m
In this study, we let 8(x,A) = f(x) + A Z gi(x)+. All the qualitative
i=1 m

results given in this paper are valid if the expression Z gi(x)+ is
i=

1
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f(x) = x £ = x
£(x) g (%) = x £(x) 8y (x) = %"
A
A
g, (x),
/” gy (x),
supporting hyperplane with slope -AO =0
2
A={y,z): y>0andz=y ory=0and z > 0} A=A{(y,2): y>0,z=+/Yy}

A nonvertical supporting hyperplane exists in
the convex case

(a)
£{x) (a) f (x)
f(x) = x
gl(x) = 1-¢*
1
1 gl(X)+
-1
|
A= {(y,z): y=0and z >0or 0 <y<1

and z = &n (1-y)}

A nonvertical supporting hyperplane does
not exist in the nonconvex case because
of noncompactness of A

()

Figure 1.

A nonvertical supporting hvperpla
does not exist in the convex case
to the lack of a constraint quali
fication

(b)

8, (x),

supporting hyperplane
with slope —AO

Illustration of a Globally Exact Penalty Function in the (g+,f) plane

y =0 and ze[0,1] or
and z = £n (1-y)!

A= {(y,2):
0 <y < l-e”

A nonvertical supporting hyperplane
exists in the nonconvex case in the
presence of the compact set X

(d)
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replaced by the expression Q( | g(x)+ll), where Q: R+ > R+ satisfies:
Q@) =0, Q) >0 for § > 0, = > 1im Q(8)/8 > 0
s+0"
This assertion follows directly from a Theorem in [8].

ThTough~:t thc paper, we assume that f and g are continuously differ-
tiable, and that X is closed. Further, we suppose that problem P is con-
sistent. These assumptions will not be repeated in the statements of the
theorems given in the paper. We also note that equality comstraints of
the form hi(x) =0 for i = 1,...,£ can be incorporated without any diffi-
culty. In order to keep the notation and development simple, we chose
to omit their inclusion.

In Section 2, we give two different sufficient conditions that ensure
the existence of an exact penalty strict local minimum. Using compactness
of X and the fact that a relatively open cover has a finite subcover, we
establish in Section 1, the existence of a globally exact penalty function.
Finally, in Section 4, we provide some insight into determining the size

of the penalty parameter.
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2. Sufficient Conditions for an Exact Penalty

Strict T.ocal Minimum

In this section, we show that an exact renalty strict local minimum
exists under two different conditions. These conditions generalize
similar conditions which are cvailable in the literature in that they
handle the presence of the set X. ?articularly, Theorems 2.1 and 2.2
extend similar results of Howe [9] and Han and Mangasarian [8]. respectively.
They assert that there exists a positive number AO such that if x is a
strict local minimum for Problem P, then x is also a strict local minimum

tor Problem P(X) for all X > A These theorems will be used in the next

O\
section to prove our main result showing the existence of a globally exact
penalty function.

The following notation and definitions will be used throughout the

manuscript. Given xeX, let

I+(x)

{i: gi(x) > 0}
I (x) = (i: gi(k) < 0}

I(x) = {i: gi(x) = 0}

X is a strict local minimum for Problem F <+ there exists ¢ > 0 such that
£(x) > €(x) for each x # xeX such that llx-xll < ¢ and gi(x) < 0 for

i=1,...,m.

x is a strict local minimum for Problem P(A) <+ there exists € > 0 such that

6(x,A) > 6(x,A) for each x # xeX such that Ma-xll < €.
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Next, we need to provide suitable tangential approximations to the
set X at a point xeX. Following Rockafellar [l4), consider the contingent

cone K(x) and the cone of hypertangents H(x) defined below:

yeK(x) <+ there exist a sequence {yk} converging to y and

a positive sequence {A, ) converging to 0 such

k

that x + A eX for each k.

Kk

yeH(x) <+ for each sequence {x,} in X converging to X. there

k
exists a positive sequence {kk} converging to 0

such that xk + AyeX for all Ag(O,Ak)

Note that H(x) is a convex cone which is not necessarily cloused and that

K(x) is a closed cone, but not necessarily convex. Further, H(x) © K(x).
Theorem 2.1 below gives a sufficient condition for the existence of an

exact penalty strict local minimum, where the closed convex cone C{x) is

defined by:
yeC(x) Vgi(x)ty_i 0 for each ieI(x)

Theorem 2.1
Let x be feasible for Problem P and suppose that Vf(;)ty > 0 for each

0 # yeC(x) NK(x). Then:

1. x is a strict local minimum for Problem P.

2. there is a number A, > 0 so that for all A 3~k0, x is

a strict local minimum for Problem P(}).

Proof

Suppose by contradiction to part (1) that there exists a sequence {x '
1Y
convarging to x such that Xy # x, xkax, gi(xk) <0 fori=1,...,m, and
X = -'— ] —- “ = - awi
f(xk) < f(x). Let Yie (xk x)/hxk xil.  Then, ka 1 and there 2xist a

subsequence {y } ., and a vector y as that ”y“ =1 and y, ~ v as k » = in K.
k'K k
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Then, yeK(x). Since gi(xk) <0 = gi(Q) for iel(x), then
_ R, (X,x, ~X)
Vgi(x)tyk + = T <0 (1)

e -xll =

where Ri(E,h)/HhH + 0 as ||lhll = 0. By taking the limit of (1) as k - « in K,
it follows that Vgi(;)ty < 0 for ieI(x). Therefore, yeC(;) N K(x). Since

liyil = 1, then by assumption, Vf(;)ty > 0. Buc

E(X ) - f(;) R(;{, ‘;)
KT ety b @
llxk—xH k ka—xﬂ

where R(i,h)/”h“ -~ 0 as |lnll = 0. Since f(xk) < £(x), the left hand side of
(2) is nonpositive while the right nand side converges to a positive number
as k »+ » in K. This contradiction implies that x is a strict local minimunm
for Problam P.

To prove part (2), suppose by contradiction that there is a sequence

{Ak} such that A\, - = and x is not a strict local minimum for Problem P(kk).

k

Thus, there is a sequence {xk} converging to x so that x # xkeX and

Bx,h) < 8Ge,A) = £(x) (3)

Again, let yk = (xk—i)/ka-QH. As in the proof of part (1), there is a
vector yeK(i) with HyH = 1 and a set K so that Y Vv as k +- « in K. Now
suppose by contradiction that for some jsI(E), ng(;)ty > 0. Since gj is

continudusly differentiable, for k in K large enough, gj(xk) > gJ(E) = 0.

Hence, by (3)

£Oq) + 285 () < 80 M) < (%)

so that
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f(x) - £(x) g.(x,) - g.(x)
"k + A, 2 k . <0 (4)

[ I P

for large k in K. As keK goes to =, the first term in (4) converges to
-t ~ - - .t
vj - - > A *®,
f(x) 7y, [gj(xk) gj(x)]/ka x|| converges to ng(x) y > 0, and L
Since this is impossible, we conclude that Vgi(E)ty < 0 for each 1el(x).

Thus yeK(Q) N C(x) and so Vf(i)ty > 0. Since

f(x) - £(x) e R(x,%, ~X)
E% AR R Pl

and since R(g,xk—Q)/”xk-iﬂ -+ 0 and Vf(}—c)tyk » Vf(;)ty > 0, we conclude that
f(xk) - f(x) > 0 for keK large enough. But by (3), f(xk) < 9(xk,kk) i'f(g),

a coutradiction. This completes the proof.

The assumption that Vf(g)ty > 0 for each nonzero vector yeC(x) 0 K(x)
guarantees that x is a strict local minimum for Problem P. It also acts as
a qualification that ensures an exact penalty strict local minimum. Theorem
2.2 gives a similar result if X is a strict local minimum to Problem P and
satisfies a suitable constraint qualification that does not involve the
objective function. Theorem 2.2 extends similar results of Pietrzykowski [12]
and Han and Mangasarian [8]. The following lemma is needed to prove the

theorem.

Lemma 2.1
Let x be feasible to Problem P and suppose that there is a vector

be a local optimal

yeH(E) such that Vv ,(i)ty < 0 for each ieI(x). Let x
gl A

solution to Problem P(X). If X, = X as A ~+ «  then Xy is feasible to

Problem P for X sufficiently large.
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Proof

; and a sequence

Suppose by contradiction that there exist a sequence {Xk:

{xk} so that Xk + » and x, > x, where x, is a local optimal solution to

k k
Problem P(Xk) which is not feasible to Problem P. Since x -~ x and gi(ﬁ) <0

. + - + +
for all i, then Ik U Ik C I(x), where Ik and Ik denote I (xk) and I(xk),
respectively. From [7], the directional derivatives of 8(',Ak) at Xy along
y is given by:

8' (x ,A,y) = VEG) Ty + A [ ] Ve )y + L (e, )W) (5)
'k *x k', L 4785 g . ik Yy
£ K 1e:Ik

(=4

Since 85 is continuously differentiable and Vgi(x)ty < 0 for ieI(x), then
there is an &€ > 0 so that Vgi(xk)ty < - ¢ for ieI(x) and for k sufficiently

large. Thus, (Vgi(xk)ty)+ = 0 for ieIk and from (5) we get:

9t (ko) = TEGe) Sy + A T T )Ty < TEG) Ty - A [T (6)

1EIk
where EIZI is the number of elements in the set f;. Since Xy is not feasible
to Problem P, then [I;| > 1. Since A > = and 7E(x) "y > VER Cy, then (6)
implies that: -
e'(xk,kk,y) <0 {7

for k large enough. But, yeH(x) and x, - x so that there is a i > 0 so

k

that X, + uyeX for each ue(O,uk). In view of (7), X, could not have been

a local minimum for Problem P(Ak). This completes the proof.

Theorem 2.2
Let x be a strict local minimum for Problem P and suppose there is a
- -t -
vector yeH(x) such that Vgi(x) y < 0 for each ieI(x). Then, there is a

AO > 0 so that x is a strict local minimum for Problem T()) for all A > xo.
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Proof
By Pietrzykowski's theorem [13], there is a number Al > 0 so that for

A > A, there exist x, and €(A) such that:

1 A

e, = xll < e) (8)
lim e(}) =0 (9)
A »> @

8(x,,A) < 8(x,)) for all xeX with [lx-kll < (1) (10)

By (8) and (9), X, > X as A = . From (8) and (10), it follows that Xy is

a local minimum for Problem P(A). In view of this and the assumptions of

is feasible

the theorem, it follows that Lemma 2.1 applies, and hence Xy

to Protlem P for A sufficiently large. Thus, from (10) we get:
£(x,) = 8(x,,}) < 8(x,}) = £(x)

Since Xy is feasible for P and X, > X, then f(xl) = f(x) for A large enough.

But, since x is a strict local minimum for Problem P, then there is a

number A. > 0 so that x, = x for A > A . x is a local

0 A 0’

minimum for Problem P(A). We wish to show that it is strict. If not,

Thus, for A > XO
there exist a sequence {Ak} and a sequence {xk} so that A > =, x # X, > X,
where X is a local minimum for Problem P(kk). By Lemma 2.1, for k

large enough, X is feasible to Problem P. However, since x is a local
minimum for Problem P(X) for A sufficiently large, then f(x) = G(Q,Ak) =
S(xk,kk) = f(xk). We have thus exhibited a sequence {xk} feasible to
Problem P so that x # X + x and f(xk) = f(x). This contradicts the strict

local optimality of x for Problem P, and the proof is now complete.
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3. A Globally Exact Penalty Function

In this section, we present our main theorem which asserts the exis-
tence of a globally exact penalty function. This is done by requiring the
set X to be compact, in addition to the existence of a suitable qualifica-

tion that guarantees a strict local exact penalty.

Theorem 3.1
Consider Problem P and suppose that the set X is compact. Denote the

set of glc--~1 optimal solwtions {x ..sth to Problem P by Q. Suppose

1’

that for each xjeQ one of the following two conditions hold:

a. Vf(xj)ty * 0 for each 0 # yeC(x,) N K(x,)

b. there exists a vector yeH(xj) such that Vgi(xj)ty <0
for all ieI(xj)

Then there exists a number A, > 0 such that for A z_ko, x, 1is a global

0 A

optimal solution to Proslem P(A) if and only if erQ.

Proof
Denote the optimal objective value to Problem P by f and consider the

family of sets A(e) and B(:) defined below:

A(N) = {x: 6(x,A) -~ £ > 0} (11)

B(A) = A(A) U Q (12)

We first show that B(A) is open in the relative topology of X for X

sufficiently large, that is, given xeB()) there exists an open neighborhood




57

NA(X) around x so that X I Nx(x)<: B(A). Since 8 is continuous, then
A()) is open so that the existence of the desired neighborhood is clear
for xeA()). Now suppose that x = xjeQ. From Theorems 2.1 and 2.2, it
follows under conditions (a) or (b) that xj is a strict local minimum
for Problem P(A) for A sufficiently large. Thus, there exists a neighbor-
hood Nx(xj) so that f = B(Xj,A) < 8(y,A) for each xj # ysNA(xj) i X, which
shows that N)&(xj) N X ©B()\).

We have thus proved that there is a number xl > 0 so that the collec-
tion {B(A): A > Al} is a family of open sets relative to X. Next, we

show that this family covers X. Let xeX and consider the following three

cases:

Case 1: f(x) > f
Here, 8(x,\) > f(x) > f for all A > 0
so that xeA(A) ©B(}) for all X > O.

Case 2. f(x) < I3
There must exist an index i such that gi(x) > 0. Thus,
for A large enmough, 8(x,)) > f(x) + A gi(x) > f so that
xcA(A) < B(M).

Case 3. f£(x) = £
If gi(x) > 0 for some i, as in Case 2, xeB()) for A > O.
If gi(x) <0 fori=1,...,m so that x is feasible to
Problem P, then x£Q. Thus, xeB(A) for each ).

Since X is compact, this relatively open cover has a finite subcover. Let
Ao be the largest X in this subcover. Noting that A' > ) implies that

B(X) © B(A'), then

XS B(O) =AM UQ for all A > A,

The above set inclusion can be restated as follows. If A > Ao and xeX then

either 8(x,A\) > f or else xeQ in which case 8(x,\) = f. This is the desired

result and the proof is complete.
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The following example shows that in order to validate the conclusion
of the above theorem, the qualification given by (a) or (b) in Theorem 3.1

must hold for each global optimal solution to Problem P.

Example 3.1

Problem P: minimize f (x)

subject to g(x) < 0

xeX
where,
_ 2 2
f(xl’xz) - _xl - X2
( - ( -1)2 if < 3
X2 Xl Xl <
g(xl’XZ) = 2 .
X, + (xl-l) if % >1

X = {(XI’XZ\. X, +x

1R L x

1’

Note that the set of global optimal solutions Q to Problem P is given by

{¢(0,1),(3,0)}. Thus, we have:

At x, = ,1)°

C(xl) = {(yl,yz): 2yl ty, 2 0}

i

K(x;) cﬂH(xl) = {(yl,yz): ¥3 > 0}

Note that 0 # yeC(xl)f1 K(xl) implies that Yo < 0, so that Vf(xl)ty > 0. Also,
there exists a vector ysH(xl) so that Vg(xl)ty <0, say y = (0,-1)t. Therefore,

both conditions (a) and (b) of Theorem 3.1 hold at X

at x, = (1,00t

C(xy) = {(y»y): vy < 0}

K(xz) = clﬂ(xz) = {(yl.y2)= Y, 2 0}
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Vf(xz)ty > 0 implies that Y1 < U, but no restrictions on Y, while
C(xz) n K(Xz) = {(yl,yz): y, = 0}, so that condition (a) of Theorem
3.1 does not hold. Furthermore, Vg(xz)ty < 0 implies that Yy < 0 so
that y%H(xz). Thus, consition (b) of the theorem is not satisfied.

In summary, the hypotheses of the theorem hold at x but not at

1,
Xye That there exists no A such that the global optimal objective
value to Problem PA is equal to f = -1 is obvious by considering

X =

A . .
X i 0)eX which yields:

8(x,5A) < 8(x,,0) = £(x,) + Ag(x,), = 707 < -1

Since compactness of X and continuity of f imply that £ is bounded
below on X, it might at first appear that this boundedness property
would ensure a global exact penalty problem if there is a local exact

problem. The following example shows that this is not the case.

Example 3.2

Problem P: ninimize f(x)

subject to g(x) < O
xeX

I
&) = 55
x+1
g(x) = )
x +1

X ={x: x> -4}

= -1 with value f = f(;) = % . f and

>

Note that Problem P has solution

i}

g are both bounded in X. 6(x,}) f(x) + Xg(x)+ has a local minimum at

x = -1 for each X} > However, for each A > 0, 6(x,%) is arbitrarily

8 -
close to 0 when x is large. Thus, it is not true that x = -1 is a

global minimum of 6(x,A) for A large enough.
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4. Estimating the Size of the Penalty Parameter

Theorem 4.1 gives some insight into determining a lower bound on the
penalty parameter in terms of the Khun-Tucker multipliers and in terms of
suitable lower bounds of the functions f and 8- Conclusion (1) asserts
the existence of a Kuhn~-Tucker multiplier vector at an optimal solution to
Problem P. This is assured by assumptions (a) and (b). Here, the former
acts as a qualificaticn and the latter enables us to use separation of dis-
joint convex sets. We note that convexity of K(xj) is not very restrictive,
and indeed holds if X is convex or smooth at Xj' Similar optimality condi-
tions can be found in Bazaraa and Goode [l], Guignard [6], and Mangasarian
[10, P. 168]. Conclusion (2) of the Theorem shows the existence of a strict
exact local penalty if the penalty parameter exceeds the value of each of
the Kuhn-Tucker Lagrangian multipliers. Here, again, assumption (a) is
used. This assumption can be replaced by a suitable second order sufficiency
condition. A similar result, in the absance of the set X, can be found in

Han and Mangasarian [8]. Conclusions (3) and (4) yield the form of the size

of the penalty parameter needed for a global exact penalty.

Theorem 4.1

Consider Problem P and suppose that the set X is compact. Denote the
set of global optimal solutions {xl,...,xh} to Problem P by Q and denote
f(xj) for jeQ by f. Suppose that for each xjeQ the following conditions
hold:

a. vE(x )ty >0 for each 0 # vy C(xj n K(xj).

J
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b. K(xj) is convex.

Then:
1. For each x,¢Q there exist scalars P, > 0 for ieI(xj) such that:
[vE(x,) + § P, Vg, (x )1y > 0 for yeK(x.)
iel(x,) J 3 J
3
2. For each ijQ, there exists a 5j > 0 such that x # xj, "x—xj“ < éj,
and A > AJ. imply that ©(x,\) > a(xj,x) = f, where
xj > max {Pij: ieI(xj)}.
m
3. There exists a number € > 0 so that [ gi(x)+ > ¢ for each xeA N B,
i=1
where A = {x: f(x) < f}, B = {xeX: Hx—xj” > 8, for j =1,...,h},
and §, = min {Sj: 1 <j<hl.
4. For A Z-AO’ X, is a global optimal solution to Problem P(A) if and
. . f+b .
only if xleQ, where XO = maximum {Xl,...,kh,-—g—} and b is such
that f{x) > -b for wach xeX.
Proof
Part (1
* *
This part is equivalent to showing that -Vf(xj)eK (xj) + C (xj), where
* *
C (x,) ={ E 5 Vgi(xj): Iy > 0 for ieI(xj)} and K (xj) is the polar

iel(x.) * c
cone of K(xj), that is, K (xj) = {y: y 'z <0 for each st(xj)}. If this

* *
were not the case, by coavexity of K (xj) + C (xj), there exist a nonzero

vector ¢ and a scalar a so that:

-c‘Vf(xj) > a (13)
t * *
cy<a .or each yeK (xj) +C (xj) (14)
. * * t
Since 0OeK (xj) +C (xj), then a > 0 from (14). Thus, by (13), c Vf(xj) < 0.
Lettin = a,, vg.(x.) in (14), where a,. > 0 f iel(x, it follo
gy igl(xj) i3 gl( J) (14) iy = or ie (XJ), ws

that z o, . cthi(xj) < o. Since this is true for all aij > 0, it

fel(x.)
el( j
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follows that cthi(xj) < 0 for each isI(xj) so that ceC(xj). Now, consider
zeK*(xj). Then ctz.E 0 because otherwise (14) would not hold for y = Az
for sufficiently large A > 0. Since ctz_i 0 for each zeK*(xj), then,
zeK**(xj), the polar of K*(xj). However, since K(xj) is a closed convex
cone, then K(xj) = K**(xj) (2, P. 52].

To summarize, we exhibited a nonzero vector ceC(xj) n K(xj) with the
property ctVf(xj) < 0. This violates assumption (a). Thus -Vf(xj)eK*(xj)

*
+C (xj), and part (1) follows.

Part (2)
We first show that xj is a strict local minimum for Problem P(Xj).

Suppose, by contradiction, that this is not the case. Then, there is a

sequence {xk} in X so that x = X50 X # X5 and

m
+ ) = = 7
£(x,) xj izlgi(xk)+ e(xk,xj) 5_e(xj,xj) £ (15)
= "y - < Il . . . .
Let Y Xy Xj)/ “Xk x} Then there is an index set K of positive
integers such that Vi + y as keK approaches ». Note that ”y” = 1 and

yeK(xj). It can be easily verified from (15) that

VE(x) Ty + A, ] (Vg (x.)Ty), <0 (16)
3 1€1(x,) 1y

From Part (1) and (16) above, we get:

02> A, ) Vg, x) "y, - I P, .Vg. (x.)'y L) (A,=P. ) (7. (x.)y)
JieI(xj) R 1el(x) B €1 (x,) SRS A SR T

Since Aj > Pij’ the above inequality implies that (Vgi(xj)ty)_+ = 0, and hence
Vgi(x:)ty < 0 for isI(xj). Therefore, ysC(xj) n K(xj). By assumption (a),
J

Vf(xj)ty > 0, which is not possible from (16). Thus xj is a strict local
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minimum of Problem P(lj), and there must exist a number 6i > 0 so that xj # x,
]

”x—xjH < Gj implies that e(x,kj) > e(xj,kj) = f. Since 8(x,)) > 68(x,r,) for

]
A D> xj, part (2) follows.

Part (3)
Consider the following sets:
B = (x: ”x—xj” < 8, for some xjeQ}
m
E(v) = {x: izlgi(X)+ >v}l, v>0
F(v) = E(v) y B

Obviously, B, E(v), and F(v) are all open for any v > 0. Furthermore, the
m
open family U F(v) covers A N X. To show this, let xeA 1 X. If Z gi(x)+ =0
v>0 _ i=1
then x must belong to Q and hence xeBc F(v) for all v > 0. 1If
m m
Z gi(x)+ > 0, then xeF(v) for any v < Z gi(x)+. Therefore, there exists
i=1 i=1
a finite subcover, say AN Xc E(e) y B for some £ > 0. In other words, if

xeX is such that f(x) E_E, then either z

: lgi(x)+ > € or else ”x-xjH < 60

for some xjeQ. Thus part (3) follows.

Part (4)

Noting part (2), it suffices to show that 8(x,A) > f for xeB and A 3_AO.

If £(x) > f, the result is immediate. Now suppose that f(x) f_f so that
m
xeA N B. By part (3), Z gi(x)+ > €. Thus:
i=1
T f+b -
8(x,\) = £(x) + A ] g;(x)yp > b+ he > b+ (e =

i=1

This completes the proof.
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An Extension of Armijo's Rule to Minimax and
Quasi-Newton Methods for Constrained Optimization

ey
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In this study, we propose an algorithm for solving a minimax problem
over a closed convex set. At each iteration a directrion is found by
solving a problem having a quadratic objective function and then a suit-
able step size along that direction is taken through an extension of
Armijo's approximate line search technique. We show that each accumula-
tion point is a Kuhn-Tucker solution and give a condition that guarantees
convergence of the whole sequence of iterates. The special cases of uncon-
strained and constrained nonlinear programming are studied. Through suit-
able chnices of the quadratic form, our procedure retrieves various steepest
descent and quasi-Newton algorithms for unconstrained optimization. For
the constrained case and using an exdact penalty function to handle the
nonlinear constraints, our algorithm resembles that of Han, but differs
from it both in the direction-finding and the step-determination processes.
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1. INTRODUCTION

In this paper we consider the following problem:

P: minimize 8 (x)

subject to xeX

. . n .
Here X is a closed convex set in R and & is of the form:

£
8(x) = £(x) + | a,(x)
j=1
O.j (X) = max {813 (x) 7 jzl)“"‘e

iel.
J

We assume that Ij is a finite set of positive integers and that the
functions f and Bij are continuously differentiable on an open set S that
contains X.

Minimax problems of the above type arise in various contexts and have
been studied by many authors. For an excellent exposition of this subject,
both from theoretical and algorithmic points of view, the reader is referred
to the works of Danskin [5], Demganov [6], and Dem§anov and Malozemov [7].
The reader is also referred to Chatelon, Hearn and Lowe [4] and Han [11] for
the special case of unrestricted minimax problems arnd to Madsen and Schjaer-
Jacobson [15] for the linearly constrained minimax problem.

In addition to Problem P itself, the special case where aj(x) = 0 for
each j has been extensively studied. In {10], Goldstein described a gradient
projection method for solving the problem to minimize f(x) subject to xeX,
and a similar procedure was proposed by Levitin and Polyak [14]. These

the next point v

. is determined bv
K+ -

methods proceed as follows. Gi n X
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projecting xk—kkvf(xk) on X, where A, 1s a suitable step size that depends

k
on the Lipshitz constant associated with Vf. 1In [16], McCormick proposed

an anti~jamming procedure for solving the problem in the special case where
X consists of bounds on the variables, and in a joint paper with Topia [17],
the procedure was extended to the case of a general closed convex set. In
{3], Bertsekas further studied this class of methods with emphasis on the
choice of the step size. He also described various ways of achieving super-
linear convergence.

We also note the class of subgradient optimization methods for solving
the problem to minimize £(x) subject to xeX in the case where f is convex
but not necessarily differentiable. Similar to the methods described above,
is computed by projecting x

given 2 point X on X, wiere Ek is

X+l MGk

any subgradient of f at Xy - For conditions on the step size Ak that assure
convergence, the reader is referred to Polyak {18,19].

In this paper, we propose an algoritum for solving Problem P. We con-
cern ourselves primarily with global convergence properties of the algorithm.
Local and superlinear convergence through appropriate choices of the quadratic
approximation are only discussed very briefly. At any iteration the algorithm
solves a subproblem that finds a search direction and then takes a suitable
step along that direction. In the case where X is polyhedral, the direction
finding problem redyces to a quadratic program, and in that respect, our
method resembles quasi-Newton procedures for solving constrained nonlinear
programs. Our direction-finding problem is also similar to the one proposed
by Han [11] for solving minimax problems and primarily differs from it in
the inclusion of the set X. The step size along the search direction is

obtained through an extension of Armijo's [l] rule that handles the nondif-

ferentiabili'y of the objective function 3.
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In Section 2, we introduce an approximation to the directional deri-
vative that maintains continuity. This approximation is the key tool in
overcoming the difficulties associated with discontinuity of the directional
derivative in determining a search direction. In Section 3, we present our
algorithm and in Section 4, we prove its convergence to a stationary point.
Section 5 is devoted to various specializations of our method. Particularly,
we discuss the cases of unconstrained and constrained nonlinear programming.
For unconstrained problems, depending on the choice of the direction-finding
problem, our algorithm gives rise to different. steepest descent and Newton-
type algorithms coupled with the efficient Armijo's step size rule. For
constrained programs, linear constraints are handled by the set X and non-
linear constraints are treated by an exact penalty function. As a byproduct,
a slight modification to the method of finding a search direction for the
class of quasi-Newton methods is suggested. This modification overcomes
the difficulty of premature termination in case the linearization of the

feasible region at the current point is empty.

]
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2. APPROXIMATING THE DIRECTIONAL DERIVATIVE

Note that the objective function 6 is not differentiable but has a
derivative along any direction d. Particularly, the directional deriva-

tive 6'(x,d) is given by:

d
8'(x,d) = vE(x)"d + ¥  max { V8., (x) d} (2.1)
j=1 iel, (x) +J
J i
where
Ij(X) ={1i: Bij(X) = aj(X)} (2.2)

Since &' is not continuous in x, a difficulty which could ultimately lead to
*
jamming, we introduce the following approximate directional derivative 8 -(x,d)
which is continuous in both x and d:
£

0¥ (x,d) = £(x) + VEx)d + ] max (8, (x) + 98, (x) d}-0(x) (2.3)
371 del, J ]

If the functions f and Bij satisfy a strong version of differentiability,
which we refer to as upper uniform differentiability, then a one-sided second
order approximation of 8(x+Ad) using the pseudo directional derivative
8*(x,d) can be devised. As will be seen in the remainder of the paper, this
approximation is instrumental in proving convergence of the proposed algo-

rithm.
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Definition 2.1

Let S be an open convex set in R® and let f: Rn+R. f is said to be

upper uniformly differentiable in S if f is continuously differentiable in

S and if there is a number Kf > 0 so that

E(x+d) € £G0) + TEGO) A + 1/2 RJJd[? (2.4)

whenever x, xt+deS.
Note that if f has a Lipschitz continuous derivative in S then it is
upper miformly differentiable. That is, if there is a number 1/2 Kf so

that
IVE(y) - VE)]| < 1/2 K¢ Hx-vi] for x,yeS

then for x and d such that x, x+deS, by the mean value theorem, we can

write
f(x+d) - £(x) = VE(y)td
for some y between x and x+d. But then
£(xtd) - £(x) - VE(x)Sd = [VE(y) - vE(x)]1%d
< 1/2 Ky ly-x]| ld]]

< 1/2 & Jal?

and hence f is upper uniformly differentiable in S.
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Lemma 2.1

Let S be an open convex set in R" and suppose that f and Bij for
ite and j=1,...,¢ are upper uniformly differentiable in S. Then, there

is a number K > 0 so that the following hold for all x,x+deS:

1. 6(xHd) < 8(x) + 6" (x,d) + 1/2 Klldil2
2. 8*(x,Ad) < A8 (x,d) for all Ae[0,1]

*
3. B(x,Ad) < 8(x) + A8 (x,d) + 1/2 A%k J|dlJ? for all Ae[0,1]

Proof

Since f and Bij are upper uniformiy differentiable, then there exist

scalars K_ and X,., > 0 so that:
f i]

f(x+d) < £(x) + VE(x)Td + 1/2 Kf[[dlf 2.5)
t 2
Byjxtd) < By () + 98, () °d +1/2 K, . [{d]] (2.6)
for all x, x+deS. Let Kj = max Kij and suppose that x, x+deS. Then from
iel;
J

(2.6) we get:

t 2

Bij(x+d)-i Bij(x) + VBlj(x) d + 1/2 Ky Hdl]

t
< max {8, () + 8, (x)"d} + 1/2 K, llal P
0 +al @) +1/2 % |ldlf? (2.7)

where

* t

uj(x,d) = r:?x {Brj(x) + VBrj(x) d} - aj(x) (2.8)

3
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Since (2.7) holds for each ite, then
* 2
aj(x+d) < aj(x) + aj(x,d) +1/2 Kj!]dl (2.9)
Summing (2.5) and (2.9) for j=l,...,L and noting (2.3) and (2.8) we get:
* 2
6(xtd) < 8(x) + 8 (x,d) + 1/2 K ||d}|
where

K=K, + ) K, (2.10)
=1

*
which proves part (1). Now let Ac[0,1] and consider aj(x,kd) below:

*(x,Ad) = {8.. + AVB,. (x)%d} - a. ()
aj X, = ig;x i3 ij(x) aj X
b
— t — -
= i?if {X[Bij + VBij(x) dl + (1 X)Bij} aj(x)
]

A

X[a;(x) ta (0] + (1-0e; () - a0

Aa;(x) (2.11)

Thus, part (2) follows immediately from (2.11). Now part (3) is obvious

from parts (1) and (2) and the proof is complete.
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It is well known that

B(xtrd) = 6(x) + X 8" (x,d) + 0(d,7)

where
Qﬁ%;&l.* 0 as A » of
uniformly in d with[ld]]= 1 (see for example Demyanov and Molozemov {7,

*
p-53]). However, conclusion (3) of the lemma would be false if 8 (x,d)
is replaced by 8'(x,d). This is evident by considering 0(x) = [xl which

corresponds to f(x) =0, £ =1, Bll(x) = x and BZl(x) = -X.
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3. DESCRIPTION OF TEE ALGORITHM

We present below a procedure for solving Problem P.

Initialization Step

Choose x,€X and choose 61,62 with 0 < 251 < 62. Let k=1 and geo to Step 1.

Step 1 (Find a direction)

Given x,e£X, let B

Kk be a positive semidefinite matrix satisfying

k

a'Bd < & [P for all der”
Consider Problem D(xk) below:

.. * t
D(xk) : minimize 9 (xk,d) +1/2 4 B, d

subject to X, + deX

If Problem D(xk) has an unbounded optimal solution go to Step 2. Otherwise,
*
let dk be an optimal solution to Problem D(xk). If 8 (xk’dk) = 0; stop. If

6*(xk,dk)_§ - 51 ”dknz, go to Step 3. If 8*(xk,dk) > - 61}}ddlz, go to Step 2.

Step 2 (Modify the search direction)
Replace Bk by [1 - (261/62)]}3k + 2611. Let dk be an optimal solution to

Problem D(xk) and go to Step 3.
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Step 3 (Find Armijo step size)

Given X, and dk’ let o be the smallest nonnegative integer V such that:

1.v 1. vl %
Blx, + (3)dp) - 8(x) < () 0 (x.,d))

_ 1,"% |
Let Y T Xt (2) dk' Replace k by k+l and go to Step 1.
By convexity of X it is clear that the algorithm always generates

feasible points to Problem P so that xksx for each k. The direction-

finding problem is equivalent to:

t £ 1 tB
D'(x,) : minimize f(x.) + VE(x) d + jglyj - 8(x) +5dBd
3 t . e
subiect to yj z_Bij(xk) + VBij(xk) d 1te, i=1,...,&
X + deX

*
In the next section, we show that 6§ (xk,dk) = 0 if and only if X, is a

Kuhn-Tucker point to Problem P' defined below:

£
P': minimize f£(x) + Z Vs
3
i=1
bject to y, > B, ieI., j=1,...,¢
subj vy 2 Blj(X) 50 3

xeX

Since this latter problem is equivalent to Problem P, then the algorithm
stops only when a Kuhn-Tucker solution is at hand.
If X is polyhedral, then Problem D(xk) is a convex quadratic program.

Note that in Step 1, we do not require B, to be positive definite. 1In fact,

K




76

the case where Bk = 0 is of special interest since it leads to a linear
program. If the optimal solution is unbounded, however, Bk is modified
slightly in Step 2 in order to guarantee a bounded optimal solution dk'
Note that the identity in Step 2 can be replaced by another sufficiently
positive definite matrix if that is deemed more desirable.

Step 2 is also needed for cases where the pseudo directional deriva-
tive 6* goes to zero too fast compared toI}dd!z. This would cause the Armijo
integers mk's to become large. Step 2 recomputes dk with a positive defi-
nite quadratic form to prevent this and to assure the uniform upper bound
on m given by Lemma 3.1. Note also that if Step 2 is used then the new
vector dk automatically satisfies 8*(xk,dk) < - 51 Hdkﬂz. It is also in-

teresting to note that if dindk_i 261HdkH2 at Step 1 then Step 2 is not
*
needed. This follows dirertly from the fact that 0 > 6 (x”’dk) +-% d;Bkdk.

Therefore, if B, is chosen to be sufficiently positive definite so that

k
dtBkd 3_2Sl]bH2 for all dSRn, then Step 2 is never used. As will be
demonstrated in Zcction 5, in some special cases, we can devise schemes
for generating a nonpositive definite matrix Bk in such a way that it is

a priori guaranteed that d;Bkdk__ 26ﬂ]dk”2 which eliminates the need for

Step 2.

Lemma 3.1

The integers mk's defined in Step 3 of the algorithm exist and o < [yl+ 1,

@

. K .
where [y] is the greatest integer in y, and v = {n Ei)/(n 2, where K ie

given by (2.10).

Proof

By part (3) of Lemma 2.1 we have:

2v+1 K[

1.v 1,v % 1 2
8(x, + () 7d)) - (k) < )7 8 (x,d) + ja !l
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4. GLOBAL CONVERGENCE

In this section, we prove global convergence of the scheme described
in Section 3. The following two lemmas are needed. Lemma 4.1 asserts that
the algorithm stops only if the point at hand is a Kuhn-Tucker solution to
Problem P', which is equivalent to Problem P. The second lemma shows that
if x, x + deX and if {xk} in X converges to x, then there is a direction d

sufficiently close to d such that X + deX for large k.

Lemma 4.1
Let xcX. Then (;, a(x)) is a Kuhn-Tucker solution to Problem P' if and only
* — . - -
if 6 (x,d) = 0, where d is any optimal solution to Problem D(x) to minimize
1

x -
8 (x,d) + 3 dth subject to xtdeX and where B is positive semidefinite.

Let d be an optimal solution to problem D(x). Further suppose that 8*(§,a) = 0.
Since d = 0 is feasible to Problem D(x) and has an objective value equal to O,
and since B is positive semidefinite, then EtBa = 0. Thus, the optimal objec-
tive value is equal to 0 so that 3 = 0 is an optimal solution to Problem D(;).
Therefore, (3 = 0, ; = a(i)) is an optimal solution to Problem D'(x). This
further implies that the Fritz John conditions stated in [2] hold at (3,;).

That is, there exist nonnegative scalars g and Vij’ not all equal to O, such

that:

£
" =v1tea 3 ce .
[ug7€(x) + ugBd + | ] v ;78,017 (d=d) > 0 if x + deX  (4.1)
j=1 ieI,
j
uy - ) v, =0 3 =1,...,2 (4.2)
0 iel 1]
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~ - =t oAy . .
vij[yj - Sij(x) - VBij(x) d] =0 1€Ij, j 1,...,2 (4.3)

]

Note that u0 > 0 because if u

which is impossible. Noting that

0 0 then by (4.2), vij = 0 for all 1,j,
d

0 and that ug >0, (4.1), (4.2), and

(4.3) show that (x,a(x)) satisfy the Kuhn-Tucker conditions for Problem P'.

Conversely, suppose that (§,§ = a(x)) is a Kuhn-Tucker solution to

Problem P'. Then there exist scalars Yij > 0 for ite and j = 1,...,£ such
that:
(VE(x) + | ) u VB, (x)]7a >0 if x + deX
j=1 ier, 3
J
Jowu,. =1 i=1,...,4
1€ 3
4
uij{yj - 81j<x)] =0 1EIj, i=1,...,4

These conditions are precisely (4.1), (4.2), and (4.3) with = 0, u, = 1,

vij = uij' Therefore, (3 = 0, ; = a(x)) is a Kuhn-Tucker solution to Problem
D'(x). Since this problem is convex, then this solution is optimal. C(Clearly,
Problems D(x) and D'(x) are equivalent and hence d =0 is an optimal solution
to Problem D(x). Thus the optimal objective value is equal to 0, and hence

- - * - -
any optimal solution d to Problem D(x) must satisfy 8 (x,d) = 0. This follows

* ~ -
because 1f 8 (x,d) < -z for some z > 0, then

* _ - - —- —_ -
e(mM)+%mei az+%ffm<o

for A > 0 and sufficiently small, violating the fact that the optimal objec~

tive value for Problem D(§) is equal to 0. This completes the proof.
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Lemma 4.2
Let X be a convex set in R and let xeX. Let d # O be such that x + deX
and let {xk} be a sequence in X converging to x. Then given an € > 0, there

exists a vector d such that][d-all< € and x, + deX for k sufficiently large.

k

Proof
Let ri(X) denote the relative interior of X. Then there exists a point

y # x + d such that yeri(X). Now consider d given by

o
(]
o
+
fe)

——N
o]
11
.‘?‘l?fl
[a¥)faN]
N’
£,
=2
U
H
o

§ = min {E JJz:i—_aﬂ}

Then

{t

x+d (E+5)+6%’_’—}-’§:—gﬁ

__8 B W
Ty Yt G g T

Thus, x + d is a convex combination of y and x + d so that x + deri(X). There-
fore, there exists a z > 0 so that if [[x +d - hil < z and if h lies in the
affine manifold generated by X then hzX. Since X i, X + deX, it is clear
that X + d is in the affine manifold generated by X. Now let h = X + d.
Then ||x + d - Ef| =[I2 - ka, and since x > x, it follows that [[(x + d) -
(xk + d)” < z for k sufficiently large so that Xy + deX. This completes the
proof.

Now we are ready to state our main ~onvergence theorem. The thevieuw

shows that each accumulation point x currespouds to & Kuhn-Tucker solution

(E,a(;)) to Problem P'. As a corollarv, we demonstrate that if X is a strong
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local minimum then indeed the whole sequence {xk} converges to x. Here, X
is a strong local minimum to Problem P if there exists a number vy > 0 so

that for each § > 0 there 1s a number z(8§) > 0 sc that
xeX, || x-X{| < v, and 8x) - 6(x) < z(8) => |lx-x||< § (4.4)

Theorem 4.1

Consider the algorithm described in Section 3 for solving Problem >. If the
algorithm stops at iteration k then \xk,a(xk)) is a Kuhn-Tucker point for
Problem P'. Otherwise the algorithm generates an infinite sequence {(xk,dk)}.
In this case, if (2,5) is an accumilation point, ihen:

1. lim dk = 0 and in particular d = 0.
k>

2. (E,u(i)) is a ¥uhn-Tucker point for Problem P'.

Proot

If the algorithm stops at iteration k then 8*(xk,dk) =  and by Lemma 4.1

it follows that ka,a(xk)) is a Kuhn-Tucker point for Problem P'. Now sup-
pose that the algorithm generates the infinite sequerce {(xk,dk)} and suppose
that there is an infinite set K of positive integers such that (xL,dk)E(;,a).
First, note that 6(xk) is decreasing and thnat 9(xk)56(§), and hence

lim S(Xk) = A(x). Also we have

K+

1. B+l % 1 k+

1 x 1 1, 12
) - 80q) < ) T (xLd) <~ ) 8y ]

. f Y
8(.(K+l or all k

and hence the right hand side must corverg» to 0. But by Lemra 2.1, L i3

houided above so ithat dk > v, and particularly d = 0. his proves part (1).
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2
Since dtBkd_i 62{[dH for all deR" and all k, then there exists an

c e - , . K!
infinite set of positive integers K' & K such tiat Bk + B, and furthermore

B is positive semidafinite. Now, suppose by contradiction to Part (2)

that (x,x(x)) is aot a Kuhn-Tucker point for Problem P'. Then by Lemma

4.1 an optimal solution d' to the problem to minimize 8 (x,d) + -

d Bd

(NI

- * _

subject to x + deX must satisfy 6 (x,d'") €< - z for some z > 0. By con-
*

tinuity of 8 and by Lemma 4.2, there exists a vector d such that

*
9 (xk,d) < - z and x, + deX for keK' sufficiently large. By Lemma 2.1,

k
for Ae(0,1) we have:

* *
8" (x, ha) + 2 AzdtBkd < 28" (x, ,d) +%)\2dts d

- k
1,2 2
< -Az +3 A ézl]dH
Let X = min {1, ——E-—E }. Then 8*(xk,kd) + %-AzdtB d < -h, where
k —_
5, il
1 2 . 2
o z -5 6, |ldf if z > &, [|d]]
) 1 22 2
5 if z < 6, Hla]
5 11l

rd

We ha’e thus constructed a vector d = Ad so that X + deX for large keK' and

=

* ~ At ~
i) = B ~-h < i 3
furthermore € (xk,o) + 2 d kd~i h < 0. But since dk solves Problem D(xk),

t -h. Letting k in K' approach = and ncting that

1
2 dBidy =
d = 0, ic follows that 0 < -h. This contradicticn proves part (2).

*
then © (xk’dk) +

Corollary
If the accumulation point X is a strong local minimum for Problem P, ther

lim = x.
oo "
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Let y > O be the number given in the definition of a strong local minimum.
Fix 0 < § < %-. We will show that there exists an £ such thatllxk—§|l< $
for all k > £, which proves the result. Since d, - 0 and Xy 5 X, then there

a~

is an ZgK such that
llep=xll < 6, 8Gxp) - 8G) < 2(®), [la I« forall k> £ (4.5)

We show the desired result by induction. For k = £, the result immediately

follows from (4.5). Now let k > £ and suppose that ka—iH < § and note that:

Iy =%I1 < b e 1+ o %l < Nl + 6 < L+ 3= (4.6)

Further, since 9(x ) < 8(x,), from (4.5) if follows that 3(x Yy - 8(x) < z(8).
o 4 kt+l

In view of (4.6) and (4.4) it is then clear that Hx -EH < §. This coumpletes

k+1

the induction argument.

It may be noted that if the directions generated by the algorithm do not
converge to zero, then 6(xk) + -®» g0 that the problem has an unbounded solution.
This f£ollows by noting that 8 is decreasing and that if there exists a set of

positive integers K so that Hdk”‘Z g > 0 for keK, then

8(x ) - 80x) < - & o 4 < - ) F 5,114

1. [y]+2 2

< - (E) 618 for each keK

If (x: 9(x) < 8(xl), xeX} is compact then {xk} has an accumulation point. If

the functions f and Bi for all i,j are convex, then every accumulation point

3

is an optimal solution to Problem P.
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5. SPECIAL CASES

In this section, we discuss various specializations of the algorithm

to unconstrained and constrained nonlinear programming problems.

Unconstrained Nonlinear Programming

Here we let X = R* and aj(x) =0 for j =1,...,£. Under different
choices of Bk our algorithm produces various methods for solving the pro-

blem to minimize f(x) subject to XER".

Steepest Descent Methods

At any iteration k the direction-finding Problem D(xk) is to minimize

Vf(xk)td +-% dtBkd. The following choices of Bk are examined. For each of

these cheices all euntries of B, are uniformly bounded so that any sequence

k

{Bk} has a convergent subsequence as needed in Theorem 4.1.

Steepest Descent Under thbe Euclidean-Norm

denotes

t 2

Let B, = I. Here d, = -Vf(x ) and 4,8 d, = —{{Vf(xk){[ , where ||
. * _ t, _ 2

the Euclidean norm. Note that 6 (xk’dk) = Vf(xk) dk HdkH so that Step 2

o”. the algorithm is never used by letting 61 = 1. 1In this case, our algo-

rithm reduces to that of Armijo [1]

Steepest Descent Under the Sup-Ncrm

Let Bk be a diagonal matrix whose ith diagonal entry bi is given by

af(x )
by = o] TGl

i

)
1
H

-

«,n

where H-Hl denotes the El-norm. Note that Bk is positive semidefinite. An

optimal solutio:i d, to Problem D(xk) is given by

k
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- 9EGell, iE 3E(x)/3x, > 0
d; =4 HVEGN,  4F 3E(x ) /3x; < 0
0 if Bf(xk)/axi =0

* t - _ , 1,
Note that § (Xk’dk) = Vf(xk) dk = %{Vf(xk)lﬁ = ﬁ[ak[i, where || ”s denotes the
sup-norm. If we let 51 = 1, it is clear that Step 2 of the algorithm is never

used.

Steepest Descent Under the Zl—Norm

Let ||*

L denote the sup-norm and let

o 9f(xy) /ax;4 .
¢ —l-rv—f“(‘;;)—lt i=1,...,n

let I = {i: ]ci] = 1}, and without loss of generality suppose that I = {1,...,v}
Let
t
d = (cl,...,cv)
t_
e = (cv+l,...,cn)

Now consider the matrix B, given below:

k
v columns n-v columns
t
d d 0 V rows
Bk =
e dt Eiz I n-v rows
- —
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We will demonstrate that B, is positive semidefinite, give the form of an

k

optimal solution dk which turns out to be a steepest descent direction under

the Zl—norm, and then show that Step 2 of the algorithm is not needed. Let

L=V
K

: . v -
y and z be arpitrery vectors in R and . Thea:

t -
(yt,zt) Bk (Z) = ytd dty + zte dy+ EZ2 ztz

Denote ytd by a and zte by g. Then, the above equation yields:

2 _ % gl + 1Vt (5.1)

t _t. Yy _ 1
(y,Z)Bk(z)—(a+2g) A

By the Schwartz inequality and no.ing that the absolute value of each com-

ponent of e is less than 1, we have:
2 2 2 2
8" < |lefl” [l2f]” < (m-v) ]|

From (5.1) it is then clear that B, is positive semidefinite. Next note that

k

dk given below is a solution to the system Vf(xk) + B d = 0, which shows that

k

under rhis particular choice of Bk’ our quadratic program yields a steepest

descent direction under the Kl-norm.

Bf(xk

1
e i=1,...,v
1

ik

Finally, note that

8" (x,a) = VEG) 4, = - T 121 —gq—f = -[vEGe AT = -ldy 1]
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where ['Hl denotes the Zl~norm. Therefore, Step 2 of the algorithm is not

needed by letting 61 = 1.

A Newton-Type Method for Unconstrained Optimization

In [9], Gill and Murray proposed a Newton-type procedure that produces
a positive defirite matrix Bk through a modified version of Cholesky's
factorization of the Hessian Hk' If Hk is sufficiently positive definite

then Bk = Hk' Otherwise B, is of the form Hk + Ek’ where E, is a diagonal

k k

matrix with nonnegative elements.

If during the factorization process of Hk into the form LDLt, a dia-
gonal element of D is not sufficiently positive, then it is replaced by a
suiltable positive scalar q. The factorization is stable and can be performed

3

within-%— multiplications. At the end, Bk = LkaLE is at hand and the

search direction dk is obtained by solving the system Vf(xk) + LkaLi d = 0.
One can easily choose the scalar q so that thky.z 26ﬂ{ﬂ§2 for any desired
61, thus eliminating the need for Step 2 of the algorithm.

The above scheme of Gill and Murray [9] can thus be used in conjunction
of our algorithm. If the Hessian at any accumulation point of the method

is sufficiently positive definite, this method reduces to Newton's method,

and quadratic convergence is assured.

Constrained Nonlinear Programming

Consider the following nonlinear programming problem:

NLP: minimize f(x)

]
—
-

subject to gj(x) <0 3 .,m

Recently, a great deal of attention has been given by many authors to extending

quasi-Newton procedures from the unconstrained case so that they can handle
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problems of the above type. For a review of these methods, the reader is
referred to Garcia- Palomares and Mangasarian [8], Han [13], and Powell [20].
A typical method in the class of quasi-Newton methods proceeds as

follows. Given X let d, be an optimal solution to the following problem:

k

D(x): minimize Vf(xk)td + % dtBkd
subject to gj(xk) - ng(xk)td_i 0 j=1,...,m

If Xy is sufficiently close to a Kuhn-Tucker point X and if B is sufficiently

k
close to the Hessian of the Lagrangian at X, then the algorithm X T % + dk

~converges to X at a superlinear rate.
In [12], Han was able to prove convergence of the procedure starting
from points remote from x. He showed that if y is sufficiently large so
that y > uj for j =1,...,m, where uj is the Lagrangian multiplier associated
with the jth constraint in Problem 5(xk), then d, is indeed a descent direc-

k

m
tion for the penalty function ¢(x) = f(x) + u Z max {O,gj(x)} at x
j=1

was able to show global convergence by letting X Ty + Akdk’ where Ak

K" He
essentially solves tlie problem to minimize ¢(xk + Xdk) subject to 0 < A < §,
where § > 0 is a fixed number.

We will now show that our minimax algorithm specializes to Han's method
and extends it in two ways. First, rather than performing a line search, our
procedure uses the easily implementable Armijo's search. In {12}, Han suggeste
that it is of some practical value to devise such an approximate search pro-
cedure for the nondifferentiable function 9. Second, a typical quasi-Newton
method could stop prematurely if Problem B(Xk\ has an empty feasible region,

. t .
that .s, if there exists no vector p such that ng(xk) p < 0 for jel, where
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1={j: gj(xk) > 0}. As will be seen shortly, our direction-finding problem
is always feasible, and furthermore it reduces to Problem B(XR) if the latter
is feasible.
Note that Problem NLP can be put in the minimax format as follows.
Let £ = m and let aj(x) = | max {O,gj(x)}, where 1 is an exact penalty para-
meter. Then Problem P becomes:
£

minimize £(x) + 4 | max {0,g, (x)}
3= )

At any particular iteration, our direction-finding »roblem reduces to:
il
D'(x,): minimize VE( )td + Z y. + l-dt d
X X BN

t .
subject to gj(xk) + ng(xk) d < yj j=1,...,m

>0 i = 1,...,m
yj'— ]

The relationship between problems D(x,) and D'(x,) is given by Lemma 5.1 below.
*x *k

Lemma 5.1
1f Problem B(Xk) is not feasible then any feasible point (d,y) to Problem

K is positive semidefinite and

m

D'(xk) must have X yj > 0. Now suppose that B
i=1 _

symmetric. Further suppose that Problem D(xk) is feasible and that it has

(dk,u) as a Kuhn-Tucker solution. If p > uj for j = 1,...,m, then (dk,y=0)

is an cptimal solution to Problem D'(xk). Further, if B, is positive definite,

k

A

then any optimal solution (d,y) to Problem D'(xk) must satisfy ; =0 and d = dk'

Proof

Obviously, if Problem B(XR) is not feasible then any feasible point (d,y) to

m
Problem D'(xk) must satisfy Z yj > 0. Now suppose that (dk,u) is a Kuhn-Tucker

j=1
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solution to problem ﬁ(xk). Then:

m
VE(q) + B4+ .Z uVe, (%) = 0

j=1
t _ .
uy [gj(xk) + ng(xk) dk] =0 j=1,...,m
t .
%(gg +V%j&k)dk§_0 j=1,...,m (5.1)
u, >0 j=1,...,m

J

But (3,;) is a Kuhn-Tucker solution to Problem D‘(xk) if there exists a vector

v such that

m

VE(x) + Bkﬁ + jZleng(xk) =0

u - vj >0 j=1,...,m

v, lgy0q) + vgj(xk)té - §j] =0 j=1,...,m (5.2)
k’.j(?ﬁ() + ng(xk)ta < ;’j j=1l,...,m

vj >0 ji=1,...,m

(u - vj)§j =0 j=1,...,m

Noting that y > uj, it follows that the system defined by (5.2) holds by

A

lecting d = dk‘ vy = 0, and v = u, By convexity of Problem D'(xk) it follows
that (dk,y=0) is indeed an optimal solution.

Ncw suppose that Bk is positive definite and let (3,;) be an optional

solution to Problem D'(xk). Therefore A(d,;) + (l—A)(dk,O) is also an optimal
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solution for all A=(0,1). This further implles that Y(X) defined below is

constant for all Ae(0,1):

m
' = t ' _ t A- A
Y0 Vf(xk) dk + )\Vt(xk) (d dk) + Au jglyj
1 .t 1 .2,~ tg A
1.t g 1 4 5B (G-
+ 5 4 By 7 A (a-d) "8 {d-d) )
+ A(d-d,)%B d
K’ k%
This implies that ¥'(X) = 0 for Xe(0,1) and hence
m ~
VE(x ) (d~a, ) + (d-d ) B.d +yu T y. +
K K K "% N
(5.3)
A(E—dk)tsk(a—dk) =0 for all Ae(C,1)

But this is possible only if (a—dk)tﬁk(a—dk) = 0, and since Bk is positive

definite, we must have d = dk' From (5.3) we have ; = 0 and the proof is
complete.

The above lemma shows that if Bk is positive definite and if u is suffi-
m
ciently large, then an optimal solution to Problem D'(xk) has Z yj > 0 only
- j=1
if Problem D(Xk) is not feasible. To illustrate, consider the problem to

minimize f(x) subject to g(x) < 0, where £(x) = (x—2)2 and

1 - (x-l)2 x <1
g(x) =
1 otherwise

If the starting solution is Xy = 1, then Problem ﬁ(xl) is infeasible and the
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quasi-Newton method would stop prematurely at the infeasible point X - OQur
minimax algorithm will not stop at this point ans would eventually converge

to the optimal solution x = 0. It is thus proposed that quasi-Newton methods
should solve Problem D'(xk) rather than Problem 5(xk) in order to find a

search direction dk'

_
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AN ALGORITHM FOR LINEARLY CONSTRAINED
NONLINEAR PROGRAMMING PROBLEMS
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In this paper an algorithm for solving a linearly constrained nonlinear
programming problem is developed. Given a feasible point, a correction vector
is computed by solving a least distance programming problem over a polyhedral
cone defined in terms of the gradients of the "almost" binding constraints.
Mukai's approximate scheme for computing step sizes is generalized to handle
the constraints. This scheme provides as estimate for the step size based on
a quadratic approximation of the function. This estimate is used in conjunc-
tion with Armijo line search to calculate a new point. It is shown that each
accumulation point is a Kuhn~Tucker point to a slight perturbation of the
original problem. Furthermore, under suitable second order optimality condi-
tions, it is shown that eventually only one trial is needed to compute the

step size.
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1. Introduction

This paper addresses the following linearly constrained nonlinear pro-

gramming problem:

P: minimize f(x)

subject to Ax < b

where f is a twice continuously differentiable function on Rn, and A 1is an
Zxn matrix whose jth row is denoted by a§, and where a superscript t denotes
the tranepnse aperation.

There are several approaches for solving this problem. The first one
relies on partitioning the variables into basic, nonbasic, and superbasic
variables. The values of the superbasic and basic variables are modified
while the nonbasic variables are fixed at their current values.. Examples of
methods ir this class are the convex simplex method of Zangwill [18], the
reduced gradient method of Wolfe [17], the method of Murtagh and Saunders [12],
and the variable reduction method of McCormick [8].

Another class of methods is the extension of quasi-Newton algorithms from
unconstrained to constrained optinization. Here, at any iteration, a set of
active restrictions is identified, and then a modified Newton procedure is
used to minimize the objective function on the manifold defined by these active
constraints. See for example Goldfarb [6], and Gill and Murray [5].

Other approaches for solving problems with linear constraints are the
gradient projection method and the method of feasible directions. The former
computes a direction by projecting the negative gradient on the space ortho-
gonal to the gradients of a subset of the binding constraints while the latter

method determines a search direction by solving a linear programming problem.
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For a review of these methods the reader may refer to Rosen [14], Zoutendiik
[19]), Frank and Wolfe [4], and Topkis and Veinott [15].

In this paper, an algorithm for solving problem P is proposed. At each
iteration a correction vector is computed by finding the minimum distance
from a given point to a polyhedral cone defined in terms of the gradients
of the "almost" binding constraints. An approximate line search procedure
which extends those of Armijo [1] and Mukai [10, 11] for unconstrained opti-~
mization is developed for determining the stcp size. First, an estimate of
the step size based on a quadratic approximation to the objective function is
couputed, and Lheu adjust2d if necessary.

In Section 2, we outline the algorithm. In Section 3, we show that
accumulation points of the algorithm are Kuhn-Tucker points to a slight per-
turbation of the original problem. Finally, in Section 4, assuming that the
algorithm converges, and under suitable second order sufficiency optimality
conditions, we show that the step size estimates which are based on the quad-
ratic approximation are acceptable so that only one functional evaluation is

eventually needed for performing the line search.

2. Statement of the Algorithm

Consider the following algorithm for solving Problem P.
Step O
Choose values for the parameters ¢, z, 8, and €. Select a point X, such that

Axy < b and let 60 = 8. Let i = 0 and go to Step 1.

Step 1

Let w, bc the optimal solution to Problem D(xi) given below:
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D(x,): minimize VE(x.) w+ - 2 ww
i i 2
subject to a;w_i 0 for jeI(xi)
where
t
I(xi) = {j. ajxi > bj - c} (2.1)
1f wy = 0, stop. Else, go to Step 2.
Step 2
Let
+ . t 1
1 (wi) = {J: ajwi > O (2.2)
and let
b, - a xi +
g, = min {1, —IL for jer*(w)} (2.3)
a.w,
joi
Let
di = Biwi (2.4)
and go to Step 3.
Steg_g
1f
f(x +ed,) + £(x.—ed.) - 2£(x,) > €26, [|a ]!’ (2.5)
i i i i i’ = iteg
lec

2 t
- € Vf(xi) di

(2.8)

A =
i f(xi+€di) + f(xi—edi) - 2f(xi)




99

- . - -1
and let Gi+ = 6i’ and go to Step 4. Otherwise, let Ai =1, &, =5 S.,

1
and go to Step 4.

Step &
Let

a, = min {1,xi} (2.7)
and compute the smallest nonnegative integer k satisfying
1.k 1,1,k t
f(xi+(2) aidi) - f(xi) j_g(z) ain(xi) di (2.8)

k

- _ 1.7 .o
Let ki =k, x =% + ai(z) di’ i=1i+4+ 1, and go to Step 1.

i+l
The following remarks are helpful in interpreting the above algorithm.

1. A direction Wy is determined by solving Problem D(xi). This problem
finds the point in the convex polyhedral cone {w: a;w < 0 for j€I(xi)}
which 1s closest to the vector - %-Vf(xi). Methods of least distance pro-
gramming, as in the works of Bazaraa and Goode [2], and Wolfe [16] can be
used for solving this problem. Special methods that take advantage of the
structure of the cone constraints may prove quite useful in this regard.

2. The restrictions enforced in Problem D(x,)} are the c-binding constraints

i

at x,, that is, those satisfying b, ~ ¢ < a?x. <b,. If w, =0, then the
i j ji—"j i

algcr'rhr is terminated with X - In this case, from the Kuhn~Tucker condi-

tions for Problem D(xi), thore cyvict v faor- jfT(xi) such that:

3
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VE(x,) + ) u,a, =0
uj >0 for jEI(xi):

These conditions imply that X is a Kuhn-Tucker point for the following

problem:

minimize f(x)

subject to atx < a?x. for jeI(x.)
=31 i
atx < b, for jéI(x.)
i =3 i

Noting that bj -c < a§xi.i bj for jsI(xi), if ¢ is sufficiently small, it
is clear that the algorithm is terminated if x; is a Kuhn-Tucker solution to
a slightly perturbed version of Problem P. The following definition will

thus be useful.

Definition 2.1

%
Let x be a feasible point to Problem P. If the optimal solution to Problem

* *
D{(x ) is equal to zero, then x is called a ¢-KT solution to Problem P.

3. 1f x + ws is feasible to Problem P, then the search vector di is taken

as w Otherwise, di is taken to be the vector of maximum length along w,

T

which maintains feasibility of x5 + di'
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4. Steps 3 and 4 of the algorithm compute the step size taken along the

vector di in order to form X1 As proposed by Mukai [10, 11], first an

+1

estimate of the step size Ai is calculated. When appropriate, A, is computed

i
by utilizing a quadratic approximation of the function f at Xss otherwise Ai
is taken equal to 1. 1In order to ensure feasibility to Problem P, the first
trial step size o, used in conjunction with Armijo line search [1], is the
ninimum of Ai and 1. As will be shown in Section 4, under suitable assump-
tions, for large i, test (2.5) passes, ki = 0, and ai = Xi < 1. This confirms

efficiency of the line search scheme where eventually only one trial is

needed to compute the step size.

3. Accumulation Points of the Algorithm

Theorem 3.1 shows that each accumulation point of the proposed algorithm is
a ¢-KT point. 1In order to prove this theorem, lemmas 3.1 and 3.2 are needed.
These two lemmas extend similar results of Mukai [10] for unconstrained problems

In order to facilitate the development in this section, the following
notation is used. Let w(x) be the optimal solution to Problem D(x) and let

B{x) be as given in (2.3) with Xy replaced with x. Finally, let d(x) = B(x)w(x)

Lemma 3.1
*
Suppose that x 1is not a ¢-KT point for Problem P. Then, there exist scalars

*
u and s > 0 so that u < a(x) < 1 for each x with |[x~x | < s.

Proof

* %*
There exists s, > 0 so that I(x) = I(x ) for all ||x-x || < Sy

*
feasible region for Problem D(x) is equal to that of Problem D(x ) for all x

Thus, the

*
satisfying fx-x || < s By continuous differentiability of £, it then follows

1°

*
that w(*) is continuous in x at x , see for example Daniel [3]. Particularly,
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* *
there exists a number s, > O such that I+(wa)) = 1 w(x)) if lx-x || < S,-
This together with the continuity of w(*) and the formula for computing B(-)
*
imply that B8(*) is continuous in x at x . Hence, d(*} is also continuous.

* * *
Since x 1is not a c¢-KT point, then w(x )} # 0. Furthermore, b, - a§x >c if

3
* * *
a;w > 0 which implies that 8(x )} > 0. Therefore d(x ) # 0. By continuity

*
of B(+) and d(*) at x there exist scalars q and s > 0 so that

Beall a 1% > L s Mlaex™l|? 1€ [[x=x"]] < s (3.1)

£(xred (x)) + £(x-ed(x)) - 2£(x) < g 1f [[x-x"|| < s (3.2)

Now, let x be such thatffx—x*” < §. Since w(x) solves Problem D(x), then
t 1 2 . . . t 1
VE(x) wix) < -3 z ||w)||“. This, in turn, implies that - Vf(x) d(x) >3z

B(x)!]d(x)H2 and from (3.1) we get:
- V@G > F 2 86D [[a&DPF =y > 0 (3.3)

1f test (2.5) passes, then from (3.2) and (3.3) the following lower bound on

Ai i{s at hand:

- €2Vf(x)td(x) €2y

M " FGred®) * £Ged(®) - ZEG) > 4

If test (2.5) fails, then Ai = 1 and hence Ai > min {l, EEX} = Y., Sinc=

o, = min {1, Ai}’ the desired result follows.

Lemma 3.2

*
If x 1is not a c-KT point for Problem P, then there exist a number s > 0 and

*
an integer m so that k(x) < m if Il x-x || < s, where k(x) is the Armijo integer
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given by (2.8) with Xg and a, replaced with x and a(x) respectively.

Proof
As in the proof of Lemma 3.1 and by continuous differentiability of f, there

*

exist scalars s, h, and y > 0 so that for || x-x H < s the following hold:
VE(x) d(x) < -y (3.4)

|VECered ) a0 - Ve a0 | <2y for each gel0,h] (3.5)

Now let m be the smallest nomnegative integer so that (%)m.i h and let x be

*
such that[lx—x H < s. Then there exists 6e[0,1) such that:

£GP0} - FO) - 3@ EIVE A

= <—}>‘“’a(x)Vf(xw(%)ma(x)d(xntd(x) - %(%)ma(xwf ) "d (x)

- (%)ma(x) l_{Vf(:ﬂe(%)ma(x)d(x))td(x) - VE) )} + —g— Vf(x)td(x)] (3.6)
Since 8(%Dma(x).i h, (3.4) and (3.5) imply that the right hand side of (3.6)

is < 0 which in turn shows that k(x) < m, and the proof is complete.

Theorem 3.1
Either the algorithm terminates with a ¢-KT point for Problem P or else gen-
erates an infinite sequence {xi} of which any accumulation point is a c-KT

point for Problem P.
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Proof

Clearly the algorithm stops at x; only if x, is a ¢-KT point. Now, suppose
*

that the algorithm generates the infinite sequence {xi}. Suppose that x is

*
an accumulation point so that x -E+ x for some infinite set K of positive

i
. *
integers. Since f(xi) is decreasing monotonically and since f(xi) E» £(x)
*
then f(xi) — f(x ). Suppose by contradiction to the desired conclusion that
*
x 1is not a c-KT point. From Lemmas 3.1 and 3.2, there exist positive numbers

¥ and y and an integer m so that ai > U, Vf(xi)tdi < -y, and ki < m for large

i1 in K. Therefore,

k

11,71 t RN I8
fxypp) - £G) <3G 7wy VEG)D) A, < - 3wy (3)

for large i in K. This implies that f(xi) — -, contradicting the fact that

*
f(xi) — f(x ). This completes the proof.

4, Eventual Acceptance of the Step Size Estimate

*
In the previous section, we showed that an accumulation point x of the
sequence {xi} generated by the algorithm is a KT point to the perturbed pro-

blem P' given below:

P': minimize f(x)
t t * . *
subject to ajx f_ajx for jeI(x )
t . *
ajx f_bj for j$I(x )

*
Here, we assume that the whole sequence {xi} converges to a point x which
satisfies suitable second order sufficiency conditions, Under this assump-

tion, we show that test (2.5) is eventually passed. Furthermore, we show
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that Xi < 1 and that ki = 0 for i large encugh.

The secoud order condition is given in Definition 4.1. It is well-known
that x* satisfying this condition is a strong local minimum for problem P'.
That is, there exists a number ¥ > 0 so that f(x*) < f(x) if x is feasible
to problem P' and}[x—xj[ <Yy, see for example McCormick [9] and Han and

Mangasarian [7].

Definition 4.1

* * * t % *
Let » be such that Ax < b and let I(x ) = {j: ajx > bj - c}. x 1is said
to satisfy the second order sufficiency optimality conditions for problem P'

*
if there exist scalars uj > 0 for jeI(x ) and Y > 0 so that:

%
VE(x ) + ] L, u.a, =0
jer(x ) I 3

* t t * t *
f(x)7d <0, a;d <0 for jellx ), Nd |l =1=>dHx)>y (4.1)

Theorem 4.1 shows that test (2.5) will eventually be passed so that
A. is given by (2.6). The following two intermediate results are needed to

prove this theorem.

Lemma 4.1
If Cd < 0 and ld ll =1 imply that a"Hd > Y > 0 then there is a number 6 > 0

so that Cd < 61 and ” d H = 1 imply that dtHd > y/2.

Proof
Suppose by contradiction that for each integer k there is a vector dk such

that




1, and dlt{Hdk < v/2 (6.2)

(a9

()
|

H

Q

a.

A
x|

Since the sequenc.e {dk} is bounded, it has an accumulation point d. From
4.2y, Jla ] =1, Cd < 0, and dtHd.i Y/2 which contradicts the assumption of

the lemma.

Lemma 4.2

If either {xi} converges or {x: Ax < b, f(x) f_f(xo)} is bounded, then

di + 0,

Proof

Since 0 < Bi < 1 and di = Biwi’ it suffices to prove that vy + 0. Suppose
there exist an infinite set of positive integers K and a number € > 0 so

that
llwi!Li € for ieK 4.3

Clearly, under either of the assumptions of the lemma, there exist zn infinite
* K' * .
K' CY and a point x so that X; > x . By Theorem 3.1 x is a c-¥T point
* *
for Problem P. Thus, w = 0 is the unique optimal solution to Problem D(x ).
*
But for large ieK', I(x ) = I(xi), and by continuity of the solutions to
D(*) we must have || will < €/2 for lavge i in K'. This contradicts (4.3) and
the procf is complete.

Throughout the remainder of this section, the following notation will

be used for any scalar y:
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1
B = 2 [ (1-y) H(x,+yvd,)dy (4.3)
i 0 i i

We can integrate by parts to ohtain

Flx.+yd,) - £(x.) = vWEx) %, + L y2atula (4.4)

i i i ! i i 2 1711
For further details, the reader may refer to Polak [13, p. 293].
Theorem 4.1
*

Let {xi} be a sequence generated by the algorithm. Suppose that X, 7% and
*
x satisfies the second order optimaiity conditions for problem P'. Then

there exists an integer m so that test (2.5) passes for all {1 > m.

Proof

From (4.3) and (4.4) we get:

_ t 1 2. t.c
f(xi+edi) - f(xi)-€Vf(xi) di + 5 € diHidi
_ t 1 2.t -€
f(xi—sdi) - f(xi) = —EVf(xi) di + 5 € diHi di
Adding we obtain:
1 2 ¢t, €,  ~€
f(xi+sdi) + f(xi-edi) - 2f(xi) 7€ di(Hi+Hi )di (4.5)

* * *
Now for jeI(x ), a;x > bj - ¢, Since X, > x then for i large enough,

ajxi > bj - ¢ so that jEI(xi). By step 1 of the algorithm agwi < 0 and so
d *
a; ” di ll< 0 for i large enough and jeI(x ). Likewise, from step 1 of the
. =




LUs
t t di *
algorithm Vf(xi) wi‘i 0 and hence Vf(xi)-TTE—ﬂ—_i 0. Since X > X, then for
d i
*
any number 8 > 0, Vi(x )t Traiﬂ'i 6 for i large enough. Thus, Lemma 4.1 and
i

the second order conditinns imply that

diﬂ(x*)di 2_%ﬁldil]2 for large i (4.6)
Now note that
€ * 1 * .
e, - 8 || =ll2 [ d-y) [H(xi*yf:di)—ﬂ(x )de I
0
1 *
<2 [ @-y) liHGepyed )-HGx) Hdy (4.7)
e

*
Since xy + x , then by Lemma 4.2, di + 0. Particularly, for i large enough,

!!H(xi+yedi)-ﬂ(x*) | < {- for all ye[0,1]. From (4.7), HH? S ] < % .

This together with (4.6) yields:

dHa, = dgu(x*)di + d;(Hi-H(x*))di
> X e 1% - ey 1P PES-aGD ]
> %-||d H2 for large i (4.8)
Similarly,
dza'iedi 3{-Hdi 1|2 for large i (6.9)

From (4.5), (4.8), and (4.9) it immediately follows that
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2

ted ) - Yitg, |12
Flxbed,) + £(x-ed ) - 2£(x) > € 7 lld, ||

for large i (4.10)

From (4.10), if test (2.5) fails for a large i, we must have:

2.~ i i 2 2 ;Y_i “2
e78, [la 1]7 > flxred ) + £(x;-ed)) - 2f(x)) > €7 3 Hd, i
that is, Gi > % . If the conclusion of the lemma does not hold, then test

(2.5) fails infinitely often and then di + 0. This contradicrts 61 > % for

large i, and the proof is complete.

Theorem 4.2

%
Let {xi} be a sequence generated by the algorithm. Suppose that X, *x and
%
that x satisfies the second order optimality conditions for Problem P'. Then
chere exists an integer m so that f(x,+a.d,) - £(x.) < l-OL.Vf(x.)td. for all
i ii i’ =3 71 i i
i>m, th-t is, ki = 0 for all i > m.
Proof
By Theorem (4.1), test (2.5) passes for large i so that Ai is given by
- frex )"y, - vee ),
Ai = =7 — (4.11)

t, £ =€
£(x +ed,) + £(x;-ed,) - 2f(x,) 7 d (H+H,7)d,

If A, <1 so that a, = Ai’ then from (4.4) and (4.11) we get:

i
fix,+.d £(x,) —-l-awf( )td =lx2dtuxid +3> Vf(x)td
Geyragdy) - i It S RO S BEA b S Sk TR WS it %4
1.2,.t Ai 1 ,t,¢= - 1 .2.t,. e ~-¢
= - — = - — 4 .
=5 AjlaB,7d, -5 d(H +H ) - 757 Ajd, (A, D, (4.12)




A
* -
Since xi -+ x , then by Lemma 4.2, di + (0. Thus Hii, H?, and HiE converge to
*
H{(x ) and the first term in (4.12) will be less than ;L-\z'[dle for i large

- 12
enough. As in the proof of Theorem 4.1, dz(Hi+Hi€)di Z.%!{dJ[ for large i.

Substituting in (4.12), the desired result holds.

Now suppose that Ai > 1 so that a, = 1. Then
1 t, _1 .t1 2 t
f(xi+aidi) - f(xi) -3 ain(xi) di =5 diHidi + 3 Vf(xi) di (4.13)
Since Ai > 1, then from (4.11) we must have
t 1 £, € -¢€
Vf(xi) di < -3 di(Hi+Hi )di
Substituting in (4.13) we get:
1 t 1 .t.1 1 ,t, €  ~€
f(xi+aidi) - f(xi) -3 ain(xi) di <3 [diHidi -3 di(Hi+Hi )di]
1 ,t,€ -¢
- = + .
15 di(Hi Hy )d; (4.14)

That the right hand side of (4.14) is < O for large i follows exactly in the

same manner in which we proved that (4.12) is < 0. This completes the proof.

Pinally, we state certain conditions inm Theorem 4.3 below which guarantee

that Ai < 1 so that a; = Xi for i large enough.

Theorem 4.3

*
Let {Ti} be a sequence generated by the algorithm. Suppose that x5 + x and

*
that x satisfies the second order optinality conditions for Problem P'. If
z < % » then there is an integer m so that Ai < 1 for all i > m, that is,

a, = A, for all i > m.

1 —
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Proof
By Theorem 4.1 there is an integer m so that tor i > m we have:
- eMee) e, - v ()
T gy wray T e g w30 Ml o (4.13)
i 17 1 5 d @ D),
i i
As in the proof of Theorem 4.1
l-dt(H€+H—E)d > Iﬂldliz for i large enough (4.16)
2 ivi i TTi—4MTd

Since LA solves Problem D(xi), then there exist scalars u,, > 0 for jEI(xi)

ij
such that
VE(x,) + 2w, + ) u;a, =0 (4.17)
jeltx,)
uijajwi =0 for jEI(xi) (4.18)
From (4.17) and (4.18) it follows that Vf(xi)twi = - z[‘wﬂ‘z. But by Theorem 3.
* * *
X 1is a c-KT point and hence the optimal solution w to Problem D(x ) is
* *
w = 0. Since L by continuity of the optimal solution to Problem D(+),
and since bj - a;xi > ¢ for each jef+(wi), it follows from (2.3) that Si =1

for large i. Thus di W, so that

Vf(xi)tdi = - zl]dﬂlz for large i (4.19)

Substituting (4.19) and (4.16) in (4.15), it is clear that Ai < 1 for i large

enough, and the proof is complete.
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ABSTRACT

Optimality conditions for families of nonlinear programming
Problems in R" ‘are studied from a generic point of view. The ob-
jective function and some of the constraints are assumed to depecnd
on a parameter, while others are held fixed. Under suitable con-
ditions, certain strong second-order' conditions are shown to be
necessary for optimality except possibly for parameter values lying

in a negligible set.
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I. Introduction.
For families of nonlinear programming problems of the type

(Q.) min f(x,p) in x subject to g(x,p) < 0, h(x,p) = 0, and

X eC

we derive optimality conditions which are generically necessary
in the sense that they hold at all local minimizers for (Qp), un-
less p belongs to a certain first category'set of measure zero.
Here, P 1s an open subset of Euclidean space (or more generally a
manifold), £, g, and h map R” x P into R, RI, and RJ, respectively,
I and J being finite sets, and the inequality g(x,p) < 0 [resp.,
the equality h(x,p) = 0] is intcrpreted coordinatewise.

In Spingarn and Rockafellar [7], such conditions for one spe-
cific class (Qp)wwere derived: right-hand-side perturbations of the
constraints and linear perturbations of the objective function. For
that class it was demonstrated that, except possibly for problems
(0) for p in a set of measure zero, the "strong second-order
conditions" (the Kuhn-Tucker conditions with strict comple-
mentary slackness, linear independence of the active constraint
gradients, and positive definiteness of the Hessian of the
Lagrangian on the subspace perpendicular to the gradients of the
active constraints) hold at every local minimizer for (Qp).

When studying questions of genericity, the class of problems

to which the results apply is crucial. The classes of problems
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considered in this paper are more general than in [7] in two ways.
First, the manner in which £, g, and h depend on p is given more
freedom. Rather than requiring perturbations of a special (e.gq.
right-hand-side) type, we will only require that the family of
problems satisfy a general and easily verifiable criterion. Sec-
ond, in addition to the constraints g < 0 and h = 0, which we re-
fer to as the "variable" constraints, we also investigate the ef-
fect of the "structural" of "fixed" constraint x ¢ C that does not
vary with p. The distinction between these two types of con-
straints is important here because the two types play different
roles both in the analysis of the conditions and in the statement
of the conditions themselves: the conditions that turn out to be
generically necessary for optimality depend on the particular
class of problems under consideration.

The reqularity conditions that we impose on the set C have‘
been incorporated into our definition of'"cyrtohedroh". Cyrto-
hedra, which were introduced in (5], are piecewise smooth sets
that can be represented locally by a finite number of nonlinear
inequality and equality constraints. They are similar to, but
more general than the "manifolds - with - corners" studied by
Schecter [4].

The idea to study mathematical programming problems from the
generic point of view goes back to the Saigal and Simon study [3]
of the complementarity problem. Several others have studied ques-
tions which arise in economics concerning the generic properties

of equilibrium models and Pareto optima. The dominant notion of
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a "generic" property in all of these studies has been the category
theoretic one, relative to spaces of differentiable mappings under
the Whitney topology, rather than the "measure zero" notion used
here, and which we feel is better suited for studying nonlinear

programming problems.
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IXI. Preliminaries and notation.

A set MCZRn is a k-dimensional Cs submanifold (s > 1) if for

each x ¢ M there is an open set Uc:Rk and a C° diffeomorphism ¢

mapping U onto a neighborhood of x in M [2]. For any xXx=4¢(g)e M,

Mx = range d¢(gq) is the tangent space to M at x. If f : rR" R,

then "f|M" denotes the restriction of £ to M. For any X« Rn,
"Vf(x)" denotes the ordinary gradient of f at x, while "V(f|M) (x)"
denotes the gradient of f£|M at x, the latter being a linear func-

tion on M, If V(£|M)(x) = 0 (i.e., if Vf(x) is perpendicular to

Mx), then x is a critical point for £ on M, and in this case the
Hessian for f|M at x = ¢(q) is the bilinear function on M definead

by
2 - - 2
(V (f]M)(x))(u,v) = (V (f9) (q)) (u,V)
where u = dd (x)u, v = dd(x)v, and Vz(foé)(q) is the ordinary

Hessian of fo¢. If VZ(fOQ)(q) is nonsingular, then x is a nonde-

generate critical point [1].

A subset Sc:Rn is of measure zero provided for every € > 0,

S can be covered by a countable family of n-rectangles, the sum of

whose measures 1is less than ¢ [1]. s <R" is of first category

provided S is a countable union of sets whose closures have empty

interior. We will call S a negligible set if S is both of measure

zero and first category.
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If ¥, N, S are submanifolds, Sc<N, £ : F - N, then £ : F - N

is transverse to S if Ny = Sy + df(x)(Fx) whenever vy = f(x) ¢ S.

For a proof of the following, consult Hirsch [1]:

(2.1) THEOREM (Pamametric Transversality) Let F, S, N be c® sub-

manifolds, P open, with ScN, ¢ : FxP =+ N of class CS,

s > max{0, dim F + dim S - dim N}, and let ¢ be transverse to S.

Then there is a subset P' c P such that P\P' is negligible and for

all peP', ¢(*,p) : F > N is transverse to S.

(2.2) COROLLARY. Let f : FxP -+ R be C2, P 0pen,F<:Rn a C2 sub-

manifold, and assume for each x ¢ F that the Jacobian of the func-

tion p k»fo(x,-)is of rank n at all pe P. Then except for p in

a negligible set, all critical points of f(+,p) on F are nonde-

generate.

Proof: Let TF = {(x,7) e R® « g

x¢F, CeFx}, p(x,p) =
(x,fo(x,p)). For each pe¢P, ¢(*,p) is transverse to Fx {0} if,
and only if, all the critical points of f(+,p) on F are nondegen-
erate. But the hypothesis implies that ¢(x,*) 1s transverse to

Fx {0} for each x ¢ F, and hence that ¢(+,*) 1is transverse to

Fx {0}. We then appl' the theorem with s = 1, N = TF, and S =

Fx{0}. O

(2.3) COROLLARY. Let F, S, N be Cl submanifolds, P open, S <N,

¢ : FxP > N of class Cl, dim F + dim S - dim N < 0, and let ¢ be

transverse to S. Then there is a subset P' ¢ P such that P\P' EE

negligible and ¢(x,p) ¢S for all peP', xeF.
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Proof: It follows from the fact that if ¢(+,p) is transverse
to S, then the dimension requirements force ¢(x,p) ¢S for all
xeF. O

For any Sc:Rn, "rank S" denotes the dimension of the linear
subspace "span S" spanned by S. ‘"relint S" is the interior of S
relative to the affine flat spanned by S.

Let UC:Rn be an open set, Ga’ ae¢A and H BeB, finite col-

BI
lections of differentiable functions on U. For any AycA and

X € U, define

F(x,AO) = {VGa(x) Q€ AO}LJ{VHB(X) : B¢ B}

Z(AO) = {yeU : 0 = Ga(y) = HB(y) VaeAO,\{beB} .

A nonempty connected set ccrRY is a cyrtohedron of class c® (s > 1)

if for every §e:C, there are finitely many CS functions Ga' Qe A,
and HB' B ¢ B, defined on a neighborhood UcR" of X such that
X ¢ 2(A) and

(2.4) (a) For all xe¢U, xe¢C if, and only if,
G, (x) £ 0 Y ach and Hg(x) = 0 Y seB.
= = A
(b) If ZAaaVGa(x) + szBVHB(x) = 0 for some aeR_ and
beR®, then a = 0 and b = 0.
{c) For each AO<:A there is an integer s(AO) such that

rank F(x,AO) = s(AO) for all x ¢ U.
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If C is a cyrtohedron, then U may always be chosen [5] so that

(b') For all xeU, (b) holds with x in place of x

t — -
(c') If AotzAlc:A and S(AO) = s(Al) then Z(Ao) = Z(Al)
(&) For all A0<:A, Z(AO) is connected (n—s(AO)) -

dimensional submanifold

and when this is done, we will say that (Ga(ae A),H%(Be B) ,U), or

more briefly (Ga'H U), is a local representation (abbr. l.r.) for

BI

C.
Let (Ga’HS’U) be a 1l.r., x e CnU. Letting A+(x) =

{aen : Ga(X) = 0}, we define

(¢« R & 527G, (x) <0 Yaea, (x), c-VH (x) =0 Y8eB)

To(x) =
Lo(x) = {¢ ¢ RY : V6 _(x) = 0Vaca (x), c+7H (x) =0 Y& eB}.
a + g8
The dimension of C is defined to be dim C'= n - |[B|. It does not

depend on x or on the particular local representation.
For x,y ¢ C, define an equivalence relation ~ by specifying

x~y if, and only if, there is a sequence x = Xqgr xl,"~,xp =y

in C such that for each pair (Xi’ ) (i=0,+++,p-1), there is a

X,
i+l

l.r. (Ga’HB’U) such that 2Z(A) :{xi,xi }. The equivalence classes

+1

under this relation are the faces of C. The proof of the following

may be found in [5]:
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(2.5) THEOREM. Let cc<R"” be a cyrtohedron of class c® (s > 1),

X e¢C. Then x lies on a unique face F of C, and F is a connected

c® submanifold of R". The tangent space F_ to F at x is L.(x).

There is a l.r. (GQ,HB,IH for C such that xe¢ Z(A), and for any

such l.r., 2(A) = FnU and dim F = dim Lc(x) =n - s(A).
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III. First-order conditions.

In this section, certain first-order conditions (3.2) are
shown to be generically necessary for optimality. This will be
done by showing that a constraint qualification, called the "in-
dependence criterion" is generically satisfied at all feasible
points. We will then appeal to a result from [5] stating that in
the presence of this qualification, these conditions are necessary
for optimality.

It is assumed here that £, g, and h are of class Cl on Rn,
and C cR" is a d-dimensional cyrtohedron,

If x is feasible for (Q), the independence criterion (IC)} is

I
satisfied for (Q) at x if for any a e¢R * and b eRQ,

(IC) ZI+ a; Vg, (x) +'ZJ byVhy(X) e Lo (x)” implies 0 = a = b.

It is trivially satisfied if I,=43d-= g. If C = Rn, IC says that

the gradients of the active constraints at x are linearly indepen-
dent. More generally, if F is the face of C that contains x, IC
says that the gradients of g |F, i €¢I _ and hj]F, jeJ at x form

a linearly independent set. From [5]), we have:

(3.1) THEOREM. If x is a local minimizer for (Q) and if the in-

. . . . . - . - I
dependence criterion is satisfied at x, then there exist y e R+ and

Z ¢ RJ such that
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(3.2) (i) —VXL(;c,)—/,E) eNC(i)

(11) ¥, > 0 implies g, (X) = 0 Vier.

Showing that the first-order conditions 3.2 are necessary for op-
timality in "most" problems reduces, by this theorem, to showing

that IC holds for "most" problems.

Let E : R® - RI><RJ be given by E{(x) = (g(x),h(x)). (I
I =J =g, then RI><RJ = {0} and E{(x) = 0), and for any 1'c1I,
define (I') = {(x,0) eRE xR : x, = ¢ Vie1'}.

1

(3.3) LEMMA. Let x be feasible for (Q). The independence cri-

terion for (Q) is satisfiea at x if, and only if,
(3.4) R™ xR~ = dE(x)(Lc(x)) + Q(I+(X))-

Proof: dE(x) is the (|I]| + |J|) xn matrix whose rows are the gra-

a

dients of fi' 1e¢I, and gj, jed. Let c = (b

) represent an arbi-
trary (|I] + |J|)-dimensional column vector. IC holds at x if,
I

. . - . . a . +
ana only if, there exists no c = b # 0 with aeR such that

c'dE(x)z = 0 for all z eLc(x), an assertion that is easily seen to

be equivalent to 3.4. [

(3.5) LEMMA. Let F be a face of C. If E|F : F ~» rRT XRq is trans-

verse to Q(I') for every I'c<I, then IC is satisfied at every xeF

which is feasible for (Q).
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Proof: Immediate from the definition of transversality and the

precceding lemma. [J

Now suppose that £, g, and h are of class C1 on Rn><P, and

let E : RO xp » RIXRJ be given by E(x,p) = (g(x,p) h(x,p}). We

say the family (Qp) is full with respect to constraints 1f the

Jacobian of the function p' = E(x,p') has rank [I| + |J] at

every (x,p) e CxP. The usual right-hand-side perturbations fit

this reqguirement; here, P = RI><RJ, and for any p = (s,t) ¢ P,
g(x,p) = u(x) - s and h(x,p) = vi(x) - t for some Cl functions u
and v.

(3.6) PROPOSITION. Let F be a face of C. Assume that C, g, and

h are of class C°, with s > max(0,d-|J|) (d = dim C), and that (Qp)

is full with respect to constraints. Then there is a subset PF<:P

IC holds at all

such that P\P is negligible, and for ‘all pePo,

X ¢ F which are feasible for (Qp).

Proof: Since (Qp) is full with respect to constraints, the Jacobian
of the function p' = E(x,p') has rank [I| + [J| at all (x,p) ¢ F xP.

In particular, E[(FXP) : FxP » RIXRJ is trivially transverse to

any submanifold of RI><RJ.
I .
For each I'cI, Q(I') c¢R ><RJ is a subspace of dimension

|x] - |1'| < |1|. sSince E|(FxP) is transverse to Q(I'), and since

dim F + dim Q(I') - dim(R*xr”) < @ + |I| - (1] + |3 =4 - |3] ,
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and since F and E are of class Cs with s > max(O,d—lJ|), it follows

by 2.1 that there is a subset P, <P with negligible complement

F
J

such that for all peP the function E|(Fx{p}) : F ~» RI><R is

FI
transverse to Q(I'). Clearly, it may be assumed that PF has this
property for all I' cI. By Lemma 3.5, for all p ePF, if xeF is

feasible for (Qp), tnen IC is satisfied at x. O

(3.7) LEMMA. A cyrtohedron has only countably many faces.

Proof: Let (Ga’HB’U) be a 1l.r. for C¢. It is enough to show that

U meets only countably many faces of C. For each xe¢UnC, define

A+(x) {aed : Ga(x) = 0}. Fix A' cA, and let T(A') = {xeUnC

A+(x) A'}. Clearly it is enough to show that T(A') meets only
countably many faces of C. For each ye¢T(A') there is an open
ball Vyc:U about y, such that (Ga(aeA‘),HB(BeB),Vy) is a l.r. for
C and G, < 0 in'Vy for all a e A\A'. By definition of "face", the
set V. nT(A') is contained in a single face of C. Thus each

y ¢ T(A') has a neighborhood in T(A') lying in a single face of C,

showing T(A') meets only countably many faces of C. [

(3.8) PROPOSITION. Let C, g, and h be of class C° with

s > max(0,d-|J]) (& = dim C), and let (Qp) be full with respect

to constraints. Then there is a subset PC<:P with negligible com-

plement such that if pe¢P,. and x is feasible for (Qp), then x

satisfies IC for (Qp).
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Proof: For each face F of C, let PF be as in Proposition 3.6,

By Lemma 3.7, P, = n, PF has the desired property. 0O

Combining this with Theorem 3.1, we obtain

(3.9) THEOREM. Let C, g, and h be of class c® with s >max(0,d-]J])

(d = dim C), and let (Qp) be full with respect to constraints.

Then there is a subset PC<:P with negligible complement such that

if p e Po and x e C is a local minimizer for (Qg), then there exists

(y.z) € RixRJ such that

(3.10) (i) —vxL<§,§,2,§> eNC(?c)

(ii) VYieI, 7, > 0 implies g;(X,B) = 0

The assumption that (Qp) is full with respect to constraints

can be weakened somewhat:

(3.11) CCROLLARY. If there is a closed subset P' c P of measure

zero such that the subfamily {(Qp) : peP\P'} is full with reSpecf

to constraints, then the conclusion of 3.9 holds.

Proof: Apply Theorem 3.9 to the subfamily. 0O
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IV. Generic Second-Order Conditions

Henceforth, £, g, h, and C are assumed to be of class C2
Let Rr = RnJ<RI><RJ, and define 71 : Rr -+ Rr by

t{w) = (VXL(w), -VYL(W). -VZL(W)) (w=(x,¥Y,2)) .

If we let C = C><Ri><RJ, then EcRr is also a cyrtohedron of class
2
c .
The second-order conditions which we show here to be generi-

cally necessary for optimality are the generalized strong second-

order conditions discussed previously in Spingarn [5]. A point

w = (§,§,E) ¢ C is said to satisfy these conditions for the problem

(Q) if

(ssoc) (i) x is feasible for (Q)
(11) —VXL(w)e relint Nc(x)
(1ii) ¥YieI, §; > 0 if, and only if, g, (x) = 0
(iv) The independence criterion for (Q) holds
at x

(v) If F is the face of C containing §, then

(v2(L F) () (2,2) >0 for all ¢eR" satis-

[}

fying 0 # ¢ eLC(i), and Q-Vgi(§)

c-th(i) =0 for all ieI, jed.
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For a more detailed discussion of these conditions, and a discussion

of their relationship to the classical conditions, we refer to (5].
If a particular representation (Ga'HB’U) for C near x is

chosen, these conditions could be rephrased in terms of the func-

tions Gu and H without ever mentioning the set C. We have

8"
avoided doing this for several reasons. Most important, the roles
played by the two types of constraints, fixed and variable, are
not the same, and the above formulation emphasizes the different
ways they enter into the conditions. Also, this formulation sug-

gests the possibility of generalizing the conditions to a broader

class of sets C. Consider, for example, the set

c = {x= (xl,X

2

3
/X3) e Rt |x| < 1 and x; +x, +x5 2> |x]1.

Because no representation of the type.2.4 exists for C near X = 0,
C is not a cyrtohedron. But, like a cyrtohedron, C can be parti-
tioned into "faces" (four in this case)'that are submanifolds,

and N.(x) and L

C C
as stated, are still meaningful. 1In fact, C has all the properties

(x) have obvious meanings, so the conditions SSOC,

that are required for our proof of the genericity of SSOC. We do
not know if there is a "natural" broader class to which our re-
sults apply. It seems that the conditions should be generic for
sets C that look (in some sense) locally like the intersection of
a cone with a neighborhood of the origin. One possible class
would be those sets C such that each x ¢ C has a neighborhood U

such that for some diffeomorphism ¢, and some closed convex coOne
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K, ¢$(x) = 0 and ¢(CnU) = ¢(U) nK. For this class, the proof of
the genericity of the above conditions does indeed go through, but
since this class does not seem to include cyrtohedra, it is not as

broad as one would like.

We observed in [5] that for any w = (X,y,z) ¢ C with x feasi-
ble for (Q),
(4.1) w satisfies 3.2 <=> -1w ¢ N_(W)
C
(4.2) if x is a local minimizer, SSOC holds <=
(a) -1we relint N~(§) and
C

(b) w is a nondegenerate critical point for L on G.

Our proof of the generic necessity of SSOC will proceed as follows.
If x is a local minimizer, then from the previous section we have
the (generic) existence of § and z satisfying the first-order con-

ditions 3.2. Let w = (x,y,z). From 4.1, it follows that

-TG<3NE(§). By 4.3, —TaezNE(G) implies (generically) that

-Tw € relint N_(w), so it will follow that 4.2a holds. By 2.2 we
c

know (yenerically) that all critical points of L on all faces of

E are nondegenerate, so that 4.2b also, and hence SSOC holds. [

2
(4.3) PROPOSITION. Let CcR" be a cyrtohedron of class C°, P

open, and 1 : R"xp » R a Cl function. Suppose that for each

(x,p) e CxP, the map p' v 7(x,p') has Jacobian of rank n at (x,p).
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Then there is a subset Poc:P such that P\P0 is negligible and for

all peP,. and all xeC,

0

(4.4) (x,p) eNC(x) = 1(X,p) € relint Nc(x).

Proof: Let F be a face of C. For every xeF, there is a 1l.r.
(Ga'HB'U) for which x€¢ 2(A) = FnU. For each such l.r., we will
show that there is a subset P <P with P\P negligible such that if
P € P and x ¢ FnU, then 4.4 holds. F may be covered by sets U cor-

responding to countably many such l.r. Taking the intersection

of the corresponding sets P gives a set PF such that 4.4 is satis-

fied for all p ePF and all xe¢F. By Lemma 3.7, the set PO = nFPF

(taking the intersection over all faces F of C) will have the de-

sired property.

So fix a face F, xe¢F, and (Ga’H U) such that xe¢ 2(A) =F n U.

BI
For any T eNC(x)\relint Nc(x), it follows from the definition of

Nc(x) that there exists A  c A such that T ¢ span F(x,AO) ; span I'(x,A).

0

Now, for any A, cA, s(AO) = rank F(x,AO) for all x €U, 80 it suf-

0

fices to show for any A, cA with s(AO) < s(Ad), that except for

0
p ¢ P belonging to a negligible subset, T(x,p) ¢ span F(x,AO) for

all xe FnU. Henceforth, we fix A, <A such that s(AO) < s(A).

0
Let N = (FnU)><Rn and S = {(x,w) eN : we span F(x,Ao)}-

Since C is of class C2, S is a (dim F + s(Ao))~dimensional Cl sub-

manifold, and N is a (dim F + n)-dimensional C2 submanifold. De-

fine o (x,p) = (x, 1(x,p)), and fix xe Fn U, pe P such that

$(x,p) ¢ S. By hypothesis, range dp¢(x,p) = {0} xR™. Aalso,
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n
= Fx><R and S = Fx><K for some subspace Kc:Rn.

Ny (x,p) o (x,p)

Hence Ny v by = So(x.p)

+ range dp¢(x,p), showing that ¢ (x,+)
P - N is transverse to S, and hence that ¢ : (FnU) xP > N is trans-

verse to S. By 2.5,
dim(FnU) + dim S - dim N = dim F + s(AO) - n< dim F + s{A) - n = 0.

So, by 2.3, there is a subset P(A0)<:P with P \P(AO) negligible,
such that for all p eP(AO) and all x e FnU, we have ¢(x,p) ¢S, or

equivalently, T(x,p) ¢ span T(x,AO). 0

The family (Qp) will be called full provided the function
p' VwL(w,p') e RY has Jacobian of rank r at all (. p) ¢ CxP.
This notion should not be confused with “full with respect to con-

straints", which is a weaker property:

(4.5) PROPOSITION. If (Qp) is full, then it is full with respect

to0 constraints.

Proof: (Qp) is full with respect to constraints if, and only if,

the Jacobian of p' + VY ,L(W,p') has full rank lx] + |J| at
’
every (w,p) ¢ CxP. When it does not have full rank, then neither
] v = 1 .
does the Jacobian of p' w VwL(w,p ) = Vx'y’zL(w,p ), so (Qp) is
not full. 0O
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n
For an example, suppose that u : R” - RI, v : R =~ RJ, and

£ : R" » R are C2 functions. Let P = R© xR.I><RJ, and for any
p = (g,s,t) ¢ P, define g(x,p) = u(x) - s, hix,p) = v(x) - t, and
f(x,p) = £(xX) - x*q. Then the Jacobian of p VwL(w,p) is minus

the identity matrix, and hence of rank r.

Previously, we saw that the first-order conditions 3.2 and
3.10 are necessary for optimality for most pe P if (Qp) is full
with respect to constraints and sufficient differentiability is
assumed. When (Qp) is full then, for most p, the stronger condi-

tions SSOC are also satisfied provided that the first-order condi-

tions are:

(4.6) THEOREM. Let C<:Rn be a cyrtohedron of class Cz, P open,

and let f, g, and h be C2 functions on Rn><P. If (Qp) is full,

then there is a subset P, <P such that P\P0 is negligible and for

0

all pe P0 if XeC is a local minimizer for (Q.), and if §E'Ri
P

and z ¢ R7 satisfy 3.10, then SSOC holds.

Proof: Since (Qp) is full, the hypotheses for Proposition 4.3 are
satisfied with C < R" in place of c<R™ and -t in place of 1. So,
there is a subset P' ¢ P with negligible complement such that for

any pe P' and we E, -1(w,p) e N_{(w) implies ~t(w,p) € relint N_{w).
C C

since (Q) is full, the Jacobian of p' > 7 L(w,p') ¢ R' is of
rank r at every (w,p) e CxP, By 2.2, for every face G of C, there
is a set P(G) with negligible complement in P such that L(:,p) has

only nondegenerate critical points on G for all pe P(a). Let




134
P" = nP(g), taking the intersection over all (countably many by
Lemma 3.7) faces of E, and define P0 = P'nP".
Fix p € P, , X a local minimizer for (), and let w= (X,y,z)
P

satisfy 3.10. Then -T(G,ﬁ) 5N~(§) by 4.1, which implies that W
C

1s a critical point for L(-,E) on the face G of C containing W by

{5, Lemma 3.1lc], and that -1(w,p) ¢ relint N_(w) since peP'. Since
C

56 P", w is a nondegenerate critical point. Thus both parts of

4.2 are satisfied and 83S0OC holds. [

(4.7) THEORE#M. Let CcR"™ be ad-dimensional cyrtohedron of class

CS, P open, f of class C2 and g and h of class c® on Rn><P with

s > max{1l,d-|J|}. If (Qp) is full, there is a subset P, <P with

P\P0 negligible such that for all p ePO : }§_§ eC is a local mini-
mizer for (Q ) there exists (y,z) 6R£><RJ satisfying SSOC.

p

Proof: Combine Theorems 3.9 and 4.6 and Proposition 4.5. [J

In the manner of Corollary 3.11, it follows that the conclusion
of Theorems 4.7 is still valid if there is a closed measure zero
subset P' ¢ P such that the subfamily {(Qp) : peP\P'} is full.
Acknowledgement. I wish to thank Professor R. T. Rockafellar for

his many helpful suggestions.
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I. IEE;oduction.

In nonlinear programming theory there 1is a large gap between
the weak first-order conditions that are necessary for optimality
and the much stronger second-order conditions that have been found
useful in the design and analysis of algorithms. It is common
practice to assume (without giving any real mathematical justifi-
cation) that very strong optimality conditions are satisfied at a
minimizer, and to base convergence proofs, and thus to justify
algorithms, on the basis of such assumptions. Of course, for any
given problem, those a priori assumptions cannot be checked, unless
the solution is already known.

In this paper, we discuss a "generic" approach to optimality
conditions that has been developed in Spingarn and Rockafellar [10]
and Spingarn (7,8,9]. Rather than talking about conditions that are
necessary for optimality in speciiic problems, we discuss instead
conditions necessary for optimality for most problems in a family
of problems. More precisely, for a family (Q(p)) of nonlinear pro-
gramming problems indexed by a parameter pe Pc R" we study conditions
which, unless p belongs to a negligible set, hold at all local

minimizers for (Q(p)) where by negligible we mean a first category

set of measure zero in P.
This approach gives a rigorous mathematical underpinning to

the a priori assumption of conditions which are not truly necessary
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for optimality, by describing the exact sense and the circumstances
in which these conditions can be expected to hold. Another attrac-
tive feature of the theory is that "constraint qualifications”,
which are normally required to prove the necessity c¢f Xuhn-Tucker
type first-order conditions, need not be assumed to obtain condition

vhich are merely generically necessary.

In this paper, no proofs are presented. Instead, we refer

the reader to the references {7,8,10].

IT. A simple class of perturbations.

Consider the basic problem

(Q) min f(x} over all xe R" such that

g(x) = 0 and h{x) = 0 ,

where the functions £ : R - R, g : R =~ Rm, and h : R —+ R
are continuously differentiable.

The standard first-order conditions for local optimality of

X in (Q) are that x should be feasible and there should exist

vectors vy e RT and 2 ¢ Rk sucnh that

(KT) VE(x) + y'Vg(x) + 2'YVh(x) =0

and for all 1¢I _(x), y, =20

where
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I, (x) =4{1i:1<is<m, g,(x) = 0}.

These conditions are not actually necessary for optimality. They
are only necessary under an acZitional assumption called a "constrai

gualification", the simplest such being

(CQ) {Vgi(x) i I+(X)}LJ{th(x) : j=1,+++,k}

is linearly independent.

When the functions f, g, and h are twice differentiable, a vector

X is said to satisfy the strong second-order conditions for local

optimality in (Q) if (CQ) holds, and there exists ye¢ RT and zZ e Rk

such that (KT) holds with

Y5 > 0 for all 1ic¢ I+(x), and
every nNONzero W e R” for which w-Vgi(x) =0
for all ice I+(x) and w-th(x) = 0 for all j also

satisfies w*H(x,y,z)w > 0,

where H(x,y,z) is the Hessian of the Lagrangian function in (Q):

2 m 2 X
H(x,y,z) = V7 E(x) + ] y;Vig; (x) + .Z

z.9°h. (x)
i=1 =1 3 J

These conditions are known to guarantee that x is an isolated
locally optimal solution to (Q). They also have other important

consequences, for example with respect to the sensitivity of x
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to changes in a parameter; cf.iestenes [ 3], Fiacco [1].
The strong conditions are useful for proving convergence results;

for example, cf. Robinson [ 5], Rockafellar [6 ], Powell [4],
Fiacco and McCormick ({2].
Let us embed (Q) in the following family of nonlinear program-

ming problems

(Q(v,u,t)) min f(x) - x-v over all xc¢« R

such that g(x) <u, h(x) = t.

The original problem (Q) then coincides with Q(0,0,0). Any partic-
ular problem in this family may be "bad" in the sense that the
strong conditions may fail to hold at some local minimizer for

that problem. Ilowever, the set of bad problems is small, as the

following shows {10]:

THEOREM 1. Suppose f 1s of class C2 and g and h are of class Cn—k

Then except for (v,u,t) belonging to a set of measure zero in

Rnx Rmx Rk, (Q(v,u,t)) is such that every local optimal solution

x satisfies the strong second-order conditions.

III. General perturbations.

Next, we examine what happens when more general families of
problems are allowed. The families we wish to consider are of

the form
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(Q(p)) min f(x,p) over all x satisfying

g({x,p) £ 0, h(x,p) =0

with p ranging over some open subset P of Euclidean space.
The family Q(v,u,t) just considered clearly is a special case.
Obviously, some additional assumption is required in order
to guarantee that the strong conditions fail only in a negligible
subfamily. After all, we could start with a "bad" problem (Q)
for which the strong conditions fail at some local minimum, and
then, by introducing trivial perturbations so that (Q(p)) =
(Q) for all p, we would obtain a family for which the conditions
fail for every problem. The problem here is that the indicated
family would not be "rich" enough; it would not contain enough
perturbations.
The following definitions specify two different ways a family
1

can be "richn". If g and h are of class C~, let us say that the

family (Q(p)) is full with respect to constraints if the Jacobian
m+k

cf the function p' + (g(x,p),h(x,p)) € R has full rank m+k at
every (x,p) ¢ R" x P. For any w = (x,y,2) € RY (r=n+m+k) and pe P, let
L{w,p) = £(x,p) + y'g(x,p) + z'h(x,p)

be the Lagrangian for (Q(p)). If £, g, and h are of class C2,
the family (Q(p)) will be called full provided the function
p' - VwL(w,p')e RY has full rank r at all (w,p) € RY x p. Every

full family 1s automatically full with respect to constraints.
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These two properties are sufficient to guarantee the generic
neccessity of the first-order (KT) and strong second-order condi-

tions, respectively:

TIIEOREM 2. (a) Let g and h be of class cs on R" x p with

s > max{0,n-k) and let (Q(p)) be full with respect to constraints.

Then there is a subset P' < P with negligible complement such that

1f ﬁe P' and X is a local minimizer for (Q(ﬁ)), then there exists

(;,E)e RTX Rk satisfying (KT).

(b) Let f be of class C2 and g and h of class cs on R™ x P

with s > max(l,n-k). If (Q(p)) is full, then there is a subset

P' ¢ P with negligible complement such that for all 56 P': 1if x
k

is a local minimizer for (Q(p)) there exists (y,z) ¢ RTX R™ satisfying

the strong second-order conditions.

To see how Theorem 2 can be applied, consider again the family

(Q(v,u,t)). We take p = (v,u,t), so for any w = (x,y,2),

L{w,p) = £(x) - x*v + y'(g(x) -u) + z2'(h(x) -t).

We may then compute
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VE(x) - v + zyngi(x) + )z.Vh, (x)

3 2
— g.(x) - u.
V L{w,p) = 1 i
w .
h. (x) - t.
J 3
and hence VprL(w,p) = -1, where I is the (n+m+k)-dimensional

identity matrix, which is trivially of rank n+m+k.

The full rank criteria given in Theorem 2 are sufficient,
but not necessary for the generic necessity of the strong conditions.
However, the rank criteria can be weakened (and thus the theorem

strengthened) slightly. To illustrate, consider the family
Ce 4 2
{(D(p)) minimize x° + p"x over all xe¢ R.

The Lagrangian for (2(p))is L{x,p) = x4 + pzx (since there are no
constraints) so VPVXL(x,p) = 2p. For Theorem 2 to apply, it would
have to be true that 2p # 0 for all p. This is not a real obstacle
though; since the theorem could be applied to the subfamily

{Q(p) : p # 0}. The same reasoning shows in general that the
result of the theorem holds whenever the set of p values for which
the rank condition fails is contained in a closed measure zero

subset of P:
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COROLLARY 1. If there is a closed subsct P'c P of measure zero
such that the subfamily {(Q(p)) : pe P\P'} is full [with respect
to constraints], then the conclusion of Theorem 2a[resp., of

Theorem 2b] holds.

Another minor extension is suggested by the family
e 2
(Q(p)) minimize px + (l-p)x over all xeR

where pe¢ R. In this case, VpVXL(x,p) = 2x - 1. For Theorem 1

to apply, it would have to be the case that 2x - 1 # 0 for all

X ¢ R. Nonetheless, it is possible to conclude in such an instance
that except for p in a negligible set, the strong conditions hold

for (Q(p)) at all local minimizers other than possibly x =

2 .

COROLLARY 2. If there is a closed set Ke Rn such that the rank

condition of Theorem 2 holds except for xe X, then the conclusion

of that theorem holds, except possibly at minimizers which are in K.

IV. Families with selective perturbations.

We are confronted with additional gquestions when we consider

a family like the following one:

(S(v,u,t)) min f(x) - x-v over x e R"

subject to g(x) su, h(x) = t, and x20.
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This family is identical to Q(v,u,t), with the important exception
that here there is an additional "fixed" constraint x 2 0 that 1is
independent of the parameters. Neither Theorem 1 nor 2 can be
applied in this situation.

Those theorems would apply, were we to alter the family by
replacing the fixed constraint with a perturbed constraint x 2z s.
This would yield a family Q(v,u,t,s) for which the strong conditions

are necessary except for (v,u,t,s) in a set of measure zero.

However, the family of interest, namely (S(v,u,t)) = (Q(v,u,t,0)),
would be a measure zero subfamily of (Q(v,u,t,s)). Thus, although
the set of "bad" oroblems in (Q(v,u,t,s)) is negligible, it does

not follow that the bad problems in S(v,u,t) are negligible with

respect to S(v,u,t).

Rather than concentrate on this particular family, we study

the generic behavior of more general families of the form

(S(p)) min f(x,p) over all x e R"

subject to g(x,p) <0, h{(x,p) = 0, and xeC,

where C is a fixed set. For the family S(v,u,t), we would take
C = Ri, while the situation in Theorems 1 and 2 requires C = R,
Concerning the family (S(p)), we will address ourselves here to
three questions: (1) What reasonable assumptions can we impose
on the set C which allow us to develop a theory of generic second-
order conditions for (S(p))? Intuition suggests that C must be

"piecewise Cz—smooth" in some sense. (2) What are the appropriate
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generic second-order conditicons? It turns out that these conditions
actually depend on the set C, and are not always (but sometimes are)
exactly the same as the conditions that would be obtained by
replacing the constraint xe¢ C with inequality or equality constraint
and then writing down the usual strong conditions for the problem
so obtained. (3) What "rank condition" ensures that these condi-
tions are generic for (S(p))?

We begin by stating our assumptions on the set C. These have
been incorporated into the definition of "cyrtohedron”. The name

"

is taken from the Greek "xuptoo" (= curved, bent) + "elpa" (= side),
ard is motivated by the fact that these sets look like polvhedra,
except that the "faces" instead of being polyhedral, are submani-
folds.

Let U< R® be an open set, Ga’ a € A and HB’ B¢ B, finite col-
lections of differentiable functions on U. For any A, c A and

0

x e U, define

F(x,AO) = {vca(x) : cxeAO} u {VH,_(x) : Be B}

B

Z(AO) = {yeU : 0=0G (y) = HB(y) VdeAO,VBEB}

A nonempty connected set Cc R" is a cyrtohedron of class c® (s 21)

if for every X ¢ C, there are finitely many Cs functions Ga’ ae A,

and H Be B, defined on a neighborhooé Uc Rn of x such that

8’
x ¢ 2(A) and
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(a) For all xe¢U, xeC if, and only if,
G, (x) <0 Voe A and HB(X) = 0Y&cB.
- - _ A
(b) If EAaavca(x) + ZBb:VHB(x) = 0 for some ae R and

beRS, then a = 0 and b = 0.

(¢} For each A, <A there is an integer s(A,.) such that

0 0

rank ?(x,AO) = s(AO) for all xe¢e U.

CExamples of cyrtohedra. (a) A differentiable submanifold in R"

is a cyrtohedron for which the set A may always be taken to be
eIT\ptY .
(b) Cyrtohedra for which the set A may always be taken either

empty or of cardinality one are submanifolds with boundary.

(c) A polyhedral convex set is the intersection of a finite

number of closed half-spaces in Rn.

(d) Sets that can be expressed as C = {(X¢ rR" g.(x) < 0,
i=1,++,m, and hj(x) =0, j=1,+++,p}, where the functions 9
and hj are of class gk and have the property that for every
xe C, {Vgi(x) : 1 I+(X)}(J{th(x) : 3 =1,+++,p} is linearly

independent, where I+(x) = {1 : gi(x) = 0}.

For an example of a simple set that is not a cyrtohedron,
consider the set Cc:R3 which consists of all x = (xl,xz,x3) such
that |x| <1, x; *+ X3 s 1, and -x; + x5 < 1. For this set, there
exist no functions G, HB which satisfy the above reguirements in a

neighborhood of the point (0,0,1).

If C is a cyrtohedron, then U may always be chosen so that
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(b') For all xe U, (b) holds with x in place of x
(c") If Aot:Al::A and S(AO) = S(Al) then Z(AO) = Z(Al)
(d) For all AO<:A, Z(AO) is connected (n—s(AO)) -

dimensional svbmanifold

and when this is done, we will say that (Ga(ch),H (8¢ B),C), or

B
more briefly (GG'HB'U)’ is a local representation (abbr. 1l.r.)
for C
Let (GQ'HB'U) be a 1.r., xe CnU. ZLetting A+(x) =
faed : G (x) = 0}, we define
s n RV = Y £ 7 e U} = )
Lo(x) = {ZeR VG, (x) 0 VucA+(x), Z vas(x) 0 VR e B}.
A+(x) B
N (x) = ) a VG (x) + ) b.VHE_(x) : aeR and be R}
C . a o a L - B"7B +
'J€A+(X) BeB

Nc(x) 1s the normal cone to C at x, and LC(X) 1s the linear approxi-

mation to C at x; the latter is the tangent space at x to the "face"
(definiticn below) of C containing x. The dimension of C is defined
to be édim C = n - |B|. It does not depend on x, and none of these
definiticns depend on the particuler local representation chosen.

For x,y ¢ C, define an equivalence relation ~ by specifying

x~y 1f, and only 1if, there 1s a sequence x = Xqgr Xl’ '~,xp =y
in C such that for eacn pair (xi,xi+l) (i=0,++-,p-1), there is a
l.r. (G_,ii_,U) such that Z(&) :{xi,xi+l}. The eguivalence classes

under this relation are the faces of C.
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A few examples help to clarify thce latter definition:
(a) The faces of a polyhedral convex set are the relative interiors
of its "faces" in the usual sernse (that 1s, subsets which are
the 1ntersection with some supporting hyperplane).

(L) A submanifold Cc R" has only one face.

(c) 1f C is the hemisphere C = {x = (xl,---,xn)e R : |x] <1 and

x>0}, then C has four faces, corresponding to the choices of

™
il

egquality or strict inequality in the definition of C:

F,o= {xo: (x| <1 and x >0}
F, = {x : Ix| =1 and x_ >0}
Fy = {x [x| ~1 and x, =0}
F, = {x: |x{ =1 and x_ =0}

To state the optimality conditions, we need some more defi-

nitions. Consider a specific problem

(S) min f(x) over all x ¢ r" such that

g({x) < 0, h(x) = 0, and xeC.

If x is feasible for (S), the independence criterion (IC) 1is

satisfied for (S) at x if for any ace R™ and b e Rk with a; = 0

fecr all 1 ¢ I+,
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(x) " implies 0 = a = Db.

It is trivially satisfied if m =k = 0. 1If C = Rn, IC says that
the gradients of the active ccnstraints at x are linearly indepen-
dent. More generally, IC says that the projections of the gradients
of 95 1e I+ and h. at x onto Lc(x) form a linearly indepen-

J
dent set.

A set Mc R is a k-dimensional CS submanifold (s 2 1) if for

each xe¢ M there 1s an open set Uc Rk and a c° diffeomorphism ¢

mapping U onto a neighborhood of x in M. For any x = ¢(g) € M,

Mx = range d%(g) 1s the tangent space to M at x. If £ : R ~ R,

then ”f{M“ denotes the restriction of £ to M. For any x¢« Rn,

"VE(x)" denotes the ordinary gradient of f at x, while "V(f'i1) (x)"
denotes the gradient of f|{M at x, the latter being a linear func-
tion on M_. If V(£[M)(x) = 0 (i.e., if Vf(x) is perpendicular to

Mx), then X 1s a critical point for £ on M, and in this case the

Hessian for f!M at x = ¢(q) is the bilinear function on M defined

by
(V2 (£00) (g)) (u,v)

]

(VA CE|M) (%)) (G, 7)

where u = ds(x)u, v = d¢(x)v, and Vz(f°®)(q) 1s the ordinary

Hessian of fe<¢. If Vz(fOQ)(q) 1s nonsingular, then x is a nonde-

generate critical point for £ on M.

Suppose henceforth that £, g, and h are of class C2 on Rn,

and that Cc R" is a cyrtohedron of class C2. We extend the definitio
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of the strong second order conditions to the vroblem (§) by

declaring a point w = (X,y,z) with XeC, §»5RT, and z ¢ RS to

satisfy the conditions whenever

(S50C) (i) x is feasible for (S)

(11) —VXL(w)e relint Nc(x)

(iidi) ieI, §i > 0 if, and only if, gi(i) =0
(iv) The independence criterion for (S) holds at X

(v) If F is the face of C containing x, then

(Vi(L]F)(Q))(c,c)> 0 for all C e Rn satis-

fying 0 # ¢ e Lc(i), and Q-Vgi(i) =

g-th(§) = 0 for all ieI,, and all j.

As before, we say the family (S(p)) is full provided the map
p' - VwL(w,p')e R" has full rank r at all (w,p) € R" xP. We now

have covered all the preliminaries needed to state the final result.

TEEOREM 3. Let Cc R" be a d-dimensional cyrtohedron of class

CS, P open, f of class C2 and g and h of class c® on R" x P with

s > maxi{l,d-ki. f (S(p)) 1is full, there is a subset PycP with

P\PO negligible such that for all pe PO

mizer for (S(p)) there exists (y,z) e ﬁ:x Rk satisfying SSOC.

if xe C is a local mini-

0f course, this result can be slightly improved in the manner of

Ccrollaries 1 anda 2.
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V. Comparison with the classical conditions.

For problems of the form (Q) we have seen that under mild

assumptions, the classical strong conditions

(sC) i) x is feasible for (Q).
11)  VE(x) + [y,9g, (x) + ZEthj<§) = 0.
iii) Strict complementary slackness: §i> 0 <=> gi(§) = 0.
iv) The gradients of the active constraints, 1i.e.
{Vgi(i) : ie 1+}L;{th(§) : j=1,-++,k} form a
linearly independent set.
v) For any Z ¢ R" satisfying 7 # 0,
+9g;(x) =0 VieI_, and c-th(Q) = 0, j=1,+*+,k,

we have g'{v2f<§)+-Z§iv2gi(§)+25jv2hj<§>15> 0

are generically necessary for optimality in families of problems
containing (Q) (cf. Theorems 1 and 2), and that for problems of
the form (S) (i.e., families with fixed cyrtohedron constraints),
the more general conditions SSOC are generically necessary for
optimality.

Locally, the fixed set C can be represented by inequality and
egquality constraints; if (Ga,Hﬁ,U) is a local representation for C,
then CnU = {x.U : G, (x) £0, ceh, HB(X) = 0, ReB}. So, at least

locally, (S) is eguivalent to a problem (Q') of the type (Q) (i.e.,

without "fixed" constraints):
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Q") min f(x) subject to g ,(x) <0, i = 1,--+,m,
hj(x) =0, 3 =1,-,k, Ga(x)s 0, aeA,
HB(X) = 0, Be B.

It is natural to ask what the relationship is between the conditions

SSOC for (S) and SC for (Q').

In most cases, the two sets of conditions are essentially

equivalent in the following sense. If (i,;,é,g,g)c R™ x RTX Rix ka R

satisfies SC for (Q'), then (§,§,E) satisfies SSOC for (8). 1If

k satisfies SSOC for (S), then it 1s possible to

(§,§,E)e R? x Q:X R
find ae Ri‘ and be R® such that (%,y,a,z,b) satisfies SCi, ii, iii.
and for any such a and 5, SCv will automatically hold for (Q').
However, SCiv may fail. For example, if C is a four-sided pyramid
in R3 with apex x, SCiv can never be satisfied for (Q') because no
set of four vectors in R3 can be linearly independent. However,
SSOCiv can (and usually will) be satisfies at x. In fact, (§,§,5)
will satisfy SSOCiv if and only if the projections onto LC(§)
of the gradients of the (nonfixed) constraints active at x are
linearly independent. But Lc(g) = {0} in this case, so SSOCiv

merely says that there are no active constraints at x. Of course,

one would expect the generic conditions to assert this. If k>0,
one would expect the apex of the pyramid to be a minimizer with
probability zero. If k = 0, it is not unusual that the apex should
be a minimizer, but one would expect one or more of the inequality

constraints to be active there only with probability zero.
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In the most common cases, such as C = Rn, the set C will be

+
expressible as the set of points which satisfy a finite number of
equality and inequality constraints with linearly independent
gradients (cf. section III, example (d) under "examples of cyrto-
hedra"). Then, the two sets of conditions are essentially the same.
The main difference is that in the SSOC formulation, no multipliers
are associated with the constraints defining the cyrtohedron.

We also remark that the SSOC formulation suggests what the
generic conditions should look like if we gerneralize them to a wider
class of fixed sets C. Consider, for example, the set

3

) e R : x| <1 and x, +xX,+x, 2 Ix|}.

C = {x=( P X 1T Xt Xy

XKyrXyr¥g

Because no local representation exists for C near x 0, C is not

a cyrtohedron. But, like a cyrtohedron, C can be partitioned into
"faces" (four in this case) that are submanifolds, and Nc(x) and
Lc(x) have obvious meanings, so the conditions SSOC, as stated above,
are still meaningful. In fact, C has all the properties that are
regquired for our proof of the genericity of SSOC. For such a set C,
i1t would be impossible to reformulate the problem (S) as a problem
in the form of (Q'), so the 0ld conditicons SC have no bearing here,
although the new conditions SSOC would apply and can be shown to

be generically necessary for cptimality. We do not know if there

1s a "natural"” Dbroader class to which our results apply. The above

example suggests conditions should be generic for sets C that look
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(in some sense) locally like the intersection of a cone with a
neighborhood of the origin. One peossible class would be those

sets C such that each xe¢ C has a neighborhood U such that for some

diffeomorphism ¢, and some closed convex cone K, ¢(x) = 0 and
9(CnU) = ¢(U) nK. For this class, the proof of the genericity of
the above conditions does indeed go through However, this is not

as broad a class as we would like; it does not seem even to include

the class of cyrtohedra.
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0. Introduction

One of the nice features of convex optimization is the link
with "monotone"” mappings. Due to this, convex problems can be
rephrased «s "variational problems", often resulting in consid-
erable simplification. This can be useful for theoretical
reasons, by emphasizing when the central justification for a
proof or procedure is the monotonicity of the subdifferential.
For example, Rockafellar [7,8] has exploited the link between
monotone mappings and saddle functions to unify and simpl}fy
the existing theory of multiplier methods in convex programming.

It is the aim of this paper to show that a concept closely
related to monotonicity, e.g. "submonotonicity", also plays a
natural role in the analysis of nondifferentiable, nonconvex
problems. We will do this by demonstrating how properties of
nondifferentiable functions can be related to monotone-type
properties of their Clarke subdifferentials.

OQur most important result appears in section IV, where a
complete characterization is obtained, in terms of properties
of the Clarke subdifferential, for the class of "lower-Cl"
functions, that is functions that arise by taking the maximum
of a compact family of Cl functions. It is shown that these
functions are precisely those locally Lipschitz functions whose
Clarke subdifferentials are "strictly submonotone",

In section III, some implications of the submon-r “onicity

property are developed, and several equivalent characterizations
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are given. This concept is then contrasted with properties that

have been discussed by other authors. Among these are regularity

in the sense of Clarke [2], gquasi-differentiability in the sense

of Pshenichnyi [5], lower semi—differentiability in the sense of

Rockafellar [9], and semismoothness in the sense of Mifflin [4].
We wish to thank Professor Rockafellar for sharing many

valuable insights with us.
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I. Notation

R" denotes Euclidean space with the usual inner product
X'y = <X,y> = inyi. The closed unit ball in R® is denoted
by B = {xeR” : |x| < 1}.

If KcrR" is a compact convex set, then W; is the support
function of K, defined by W;(u) = sup{<u,x> : xe¢ K}. For any
ue RY, we let K, = {xe K : <u,x> = W;(u)}.

The notation T : R I R" indicates that T is a set-

valued mapping. T is closed provided the set {(x,y) : ye T(x)1}

is closed. T 1is locally bounded if for every Xxce¢ R" there is

€ >0 and R > 0 such that vye T(x), |x-x| < € implies |y]| <R.
We will say the sequence (xn) converges to x 1in the

. . n . . .
direction wue¢ R, written X, T X provided either X, > X

X —-X
n u

ENCIEY

and u =0, or u # 0, , and xn # x for all n.

If £ : R® » R, the directional derivative of f at x

(when it exists) is

f(x+tu) - f(x)

f'(x;u) = lim -

t+v0
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II. Submonotonicity

In this section, T : rR" 3 R® denotes a convex-valued closed

multifunction. T will be called submonotone at x e R" provided

<y' -y, x' - x>

lim inf
X'+x, X'#x
yeT(x), y'eT(x")

(T is trivially submonotone at x if T(x) = g). T is directionally

upper semicontinuous (d.u.s.c.) at x provided that for all uce Rn,

whenever xk-—-h X and yke T(xk) for all k, then for every £ > 0

there exists ko such that

v
~

T(x,) «© ".‘(x)u + €B Yk

For u = 0, this is automatically satisfied since T is assumed

to be closed. If T is locally bounded near x then T is d.u.s.c.
at x if, and only if, for all u # 0, whenever X~ X and

T(xk) 2 Y. Y then vy e T(x)u. If T is submonotone [respectively,

d.u.s.c.] at all xe¢ Rn, then T is submonotone [resp., d.u.s.c.].

(2.1) THEOREM. set T : R® 2 R™ be locally bounded near x (as

is the case if T = 9f with f locally Lipschitz). Then T is

d.u.s.c. at x if, and only if, T is submonotone at x.
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Proof. II T is not submonotone at x, there is ¢ > 0 and there

]
are sequences x_  * X, X # X, Y € T(xn). Y, € T(x), such that

<X ~X - 'S
n X Yp7Y¥q

jx_ - x|
n

<-g < 0, Vn. we may clearly assume X,y X for

some u # 0, and since T 1is closed and locally bounded, that
Y, T Ye T(x) and yn' + y'e T(x). Then W;(X)(u) > <u,y'>=-¢€ 2 <u,y>,
so T is not d.u.s.c.

Suppose that T is submonotone at x. Let xn-——a x, u # 0,
Yy € T(xn), Y, ~ Y- Since T is closed and locally bounded,
ye T(x) and we will be done 1f we can show y e T(x)u. If ze T(x),
<yn - 2, X_ - X>

BN °

v

lim

]

(y = 2)-u

since T is submonotone at x. Since this holds for all zc¢ T(x),
y-u 2 W;(X)(u), showing that T is d.u4.s.c. at x. #&

Of course if f : Rn + R is convex, 3f is monotone, and hence
submonotone. The fact that 3f is directionally upper semicontinuous

is proved by Rockafellar [6, Theorem 24.6].

The multifunction T : R" 2 R™ will be called strictly submon-

otone at x provided

¥y T Xpr ¥y T ¥y

Til - le

v
(@)
.

lim inf
X17%,
X.»%X, 1=1,2

1

y eT(x,), i=1,2

Strict submonotonicity clearly implies submonotonicity.
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licxt, we ctate a zharactecization of strict submonotonicity
simiiar to the one pwovided in Theorem 2.1 for subronotonicity.

The proof is similar,; so it haes been omitted.

(2.2) THEOREM. Let T : K" 3 R" be locally bounded near’ X.

Then T is strictly submonotone at x if, and only if, whenever

- t , 1 [ t oL !
X, > X, X0 >, X # Xl Y€ T(xn), Y, € T(xn), Y, > Y ¥, v',

X =~ x!— 0, one alsg has vey' < vey.
n n v
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ITI. Lipschitzian functions

Next, we turn our attention to a particular class of multi-
functions, namely those that are the Clarke gencralized gradient
mapping [1] for a locally Lipschitz function f : R + R. Thus,

if T = 5f, we ask what the submonotonicity of 3f implies about f.

If £ is locally Lipschitz, the Clarke derivative of f 1is

the function

f°(x,u) = lim sup f(X+h+tu)t— f (x+h)

t+v0
h-+0

f°(x,*) 1is a continucus sublinear function which is the support

function of the compact convex set df(x) called the Clarke general-

ized gradient of f at x. For every u,ve Rn, f°(x;*), being a

finite convex functior, possesses a finite directional derivative
at u in the direction v which we denote by f°(x;u;v). Alterna-

tively, we could define f°(x;u;*) to be the support function of

af(x)u. Clearly f°(x;0;+) = f°(x;*). Let us also define
lim sup fx#httv) - f(x+h) ifu#0
t
h— 0
N u
f (x;u;v) = t/lh]+0
fe(x;v) if u=20
Clearly f+(x;u;v) < f°(x;v). Also, f+(x;u;-) is sublinear, so

>

f (x;u;+) is the support function of some subset of 3f(x). As
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we shalil sec. zhe case vhere that subset is Bf(x)u correcsponds
to the casc where 3f is submonotone or, equivalently, d.u.s.c.

To see that f*(x;u;-) is sublinear, note that

f (x+h+t(vi+vy)) - £(x+h)
t

f+(x;u;v lim sup

l+v2)

£ (x+(h+tvy)+tv,) - £(x+(h+tvy))
t

A

linm sup

f(x+(h+tvl)) - f(x+h)
t

+ lim sup

= £ (x;u;v,) + £ (x;u;
= (xrdlvz (xlulvl) .

(3.1) THEOREM. Let £ : R" » R be locally Lipschitz. 3f is
d.v.s.c. at x if, and only if, f£°(x;u;v) = f+(x;u;v) for all u,ve Rn
Proof: {<=) Let u # 0 (if u = 0, the assertion is trivial)},

X, T X af(xk) =) Y > Y- To show 3f is d.u.s.c., it must be

demonstrated that y e Bf(x)u. Fix an arbitrary ve R®. Then

f(xk+h+tv) - f(xk+h)
vey, S f°(xk;v) = lim sup T
h~0
t+0
s0 hk' tk>0 can be found with
oy, - 1 ) f(xk+hk+tkv) —_f(xk+hk)
k k ty
and rax {t,, }hk]} < |xk - x|/k .
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Hence,
vey = lim VY
k
f(x,+h +t v) - £(x, +h, )
< lim sup k _k kt k k
k k

f*(x;u;V),

A

where the last inequality follows from the fact that x X + h —

k k u
and tk/lxk—x+hkl¢0. But fw(x;u;v) = £°{x;u;v) by assumption, so
*
vey < £°(x5;u;v) = Waf(x) (v) for all v, which implies that ye Bf(x)u
u

(=>) Fix u # 0, ve Rn. First we show that f°(x;u;v) 2 f*(x;u;v).

3 |
Pick sequences h — 0, t./ih |+ 0 such that

f(x+hn+tnv) - f(x+hn)

g .
f (x;u;v) = 1im
n-w “n

By the mean-value property [Lebourg, 31, there is, for each n,

y € df(x+h +c_t _v) with 0 < c¢_ < 1 such that
n n nn n

f(x+hn+tnv) - f(x+hn)
v-yn = T .
n

Without loss of generality, we can assume that Y, Y for some

ye df(x). Since 3f is assumed to be d.u.s.c. at X, we have
*

> .
ye3f(x) . Hence f (x;u;v) = lim v Yp = vy = Waf(x)u(V)

f°(x;u;v), as desired.
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To prove the opposite inequality, fix u # 0, ve Rn, W€ af(x)u,

and we will show wev < f*(x;u;v). From this, the desired inequality

follows by taking the supremum in w.

By d.u.s.c., we may find Gn >0 (n=1,2,-++) such that
0 <8< 6

implies
n P

8f(x+6(u+%V)) c 3f(x) +1l§ B .
v 'n

|

Clearly we may assume 6n > 0. Let X, = x|+ 6n(u+%v) and choose
1 .

Yq € af(xn). Then X, — X and Y, € Bf(x‘ + — B. Since

g u+HV n

we may find t_ > 0 and h_.e R
n n

>

-

Y, € af(xn), such that
f(xn+hn+tnv) - g(xn+hn)

t

n

max{|h_ |, t } < |xn-$]/n

TV - 1'. <
“n n

Next, we will show that lim inf yn-v 2 wev., Since x
n H

nt BTy X
and tw/lxn—x+hnl+0, this will imply

/ f(x +h +tnv) - f(xn+h )
j wev < lim inf n_n = L
n n
! s £ (x;u;v)
f

which is

i

the desired result.

, 1

i L -ty ! <

| For each n, choose yn\_af(x)u+lv such that lyn ynl e ;7 .
/Then n
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Loy = vie(usl —v ') . (uek
yn-(u+Hv) =y (u+nv) + (yn yn) (L+nV)

1 1 1
2 we (utzv) - ;f lu+Hv|

(because we 3f(x), Yﬁé of (x) 1 )

u+=v
n
2 y'eu + %w-v - jflu+%vl
n
(because we af(x)u, yge af (x))
2y cu+ % wev - j? (|u|+|u+%v|)
n

. 1
(because Iyn—ynl s-n—z- ). So
1 1.
Y, 'V 2 WV - H(|u|+|u+5~|)
and hence lim inf Yo'V 2 wev, as desired. [

Combining our results so far, we obtain the following:

(3.2) COROLLARY. If f : R® > R is locally Lipschitz, then the

following are equivalent

i. 23f is submonotone at x

ii. 23f is d.u.s.c. at x

>
iii. £ (x;°+;°) = fo(x;<;°)
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Now that we have acquired a better understanding of the
submonotonicity property of 3f and what it implies about £,
a logical question to ask next is: Just how strong is this
property? In other words, if we take a look at "regularity" or
"subdifferentiability" properties that have been studiéd for
nondifferentiable functions by other authors, then which of these
imply or are implied by the submonotonicity of 3f?

A locally Lipschitz function . f : R" > R is said to be
semismooth at xe Rn [Mifflin, 4] provided that X, T X and
Yy € af(xk) imply that u,y> > £'(x;u).

(3.3) PROPOSITION. If ©9f is supmconotone at x then t is

—_— ——

semismooth at x.

Procf. If X, — X and Yy € Bf(xk) then every subsequence

of (yk) has a subsubseguence converging to some point in af(x)u

*
by directional upper semicontinuity. Hence <u,yk> - Waf(x)(u)’

*
By Proposition 3.5, V¥ (u) = £'(x;u). B

af (x)
The function f(x) = -|x| is semismooth, but 3f is not
submonotone at x = 0, so the converse of 3.3 is false.

Following Pshenichnyi [5], let us say that f is quasi-differ-

entiable at x 1if there is a closed convex set K such that

*
£'(x;+) = ¥, (+). The function £(x) = -|x| 1is not quasi-differ-~
entiable, so it is natural to ask whether every locally Lipschitz

function which is both semismooth and quasi-differentiable has
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a submonotone subgradient mapping. The answer is negative.

Consider the function £ : R2 + R defined as follows:

0 if a < 0

f(a,b)

1

a2/4 if a > 0, |b| = a2/2

Ib| - b2/a’ if a > 0, I|bl < a%/2

Then £ is differentiable at all points where either b # 0
or a < 0. At all points x = (a,0) with a > 0, f 1is quasi-

:
differentiable since f'(x;+) = WK(-) with XK = {¢0,-1),(0,1)1.

f 1is also locally Lipschitz, and it is not hard to check that
f 1is everywhere semismooth. However, 29f 1is not d.u.s.c. since

9f£(0) = K but (0,0) € 9£(0,b) for all b # 0.

A locally Lipschitz functicn £ : R® > R will be called

*
of (x)

Clearly this is a stronger property than quasi-differentiability.

regular at x [Clarke, 2] provided that £'(x;+) =V (+).
The function £ of the previous paragraph is not regular at 0,
so it is natural to ask whether semismoothness plus regularity
implies the submonotonicity of 3f. This time the answer is

affirmative:

(3.4) PROPOSITION. 9f is submonotone at x if, and only if,

f 1s semismooth and regular at x.

Proof. Suppose f 1is semismooth and regular at x. If X, T X

(u # 0), Y € af(xn), and Y, >V then ye df(x) ard
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<y,u> = lim <Y ru>
= £'(x;u) (by semismoothness)
. .
= Vaf(x)(u) (by regularity)

SO Ye af(x)u. Hence 3f is d.u.s.c., hence submonotone at x.
The other direction follows by Propositions 3.3 and 3.5. B
Rockafellar [9] has defined 2z e R® to be a lower semigrad-

ient for £ at x if

lim inf f(X+tV)t_ GO <u,z> WYueRr®
vu

t+0 -

If such a 2z exists, f 1is lower semidifferentiable.

(3.5) PROPOSITION. Let f : R® - R be locally Lipschitz, df

submonotone at x. Then

- * R
lim f("*t"f: £x) Yog i (W Vue R™.
£40 %
v--u

In particular, £ is lower semidifferentiable at x and 2f(x)

is the set of lower semigradients. Also, f 1is reqular at x.

Proof. If u = 0, this follows easily from the fact that £
is locally Lipschitz, so suppose u ¥ 0. Let tn+0, v,Tu. For

each n, there is C, € (0,1) and Y, € 3f(x+cntnvn) such that
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f(x+tnvn) ~ f(x)
t = YptV, o
n
*
i 1 . W
Since x + cntnvn-——h X, we must have Y, U > ‘Bf(x)(u)' Thus
f(x+tnvn) ~ f(x)
lim = lim y_-vVv
t n n
n-+>w n
. *
= lim y,cu = Waf(x)(u) .

Hence f is lower semidifferentiable and 23£f(x) is the set of
lower semigradients. It is then obvious that f is regqular

-

at x. B

The converse of 3.5 is false: £f(x) = x2 sin % is
locally Lipschitz and differentiable but 23f is not submonotone
at x = 0. i
and lower semidifferentiabl
It is also possible for a function to be regularkbut for

df not to be submonotone. Consider, for example, any function

f : R > R satisfying the following properties:

,
PN

W=

(i) £(x) = x - % for x=3,
X

. . . . . . 1 1
1 4 . —
(ii) £ exists and is decreasing on a3 1 rm)'

1
f;(511> =1, and fl(%) =0, n=2,3,4,---
C. 1 : 1
(iii) £(x) = vy for x 2 5 and £(0) = 0

(iv) f(-x) = £(x) for all x.
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Since [x| - x% s £(x) < |x| for all x, £'(0;u) = |u| for all
u. Also, 23f(0) = [-1,1] =so £f 1is regular at 0. But 3f
is clearly not submonotone at 0. Note that the behavior of
f 1is nice at all points x # 0.

Since the property of strict submonotonicity is central to
this paper, it is useful to mention an example of a function

2 2

£ : R >R such that 3f 1is submonotone everywhere, but is

not strictly submonotone. The function is

Iyl if x <0
2 .. 2
f(x,y) =/]y]-x if x =20, Jy| 2 x
x4— 2 2
————%— if x 20, |y] sx
2x

It is easily checked that £ 1is locally Lipschitz, that 23f 1is

everywhere subnionotone, and 23£(0,0) = [(0,-1),(0,1)]. 1If we
—_ l l ) — _]: __l = .2_ - t = .2_ = o e e
let xn - (HIT\) ’ Xn - (nr "f’)r Yn - (nl l)r Yn - (nll>l n"lrzr
n n
and u = (1,0), then x — 0, x'— 0, y_ e 9f(x ), and
n u n u n n

yée af(xé) for all n. However,

<x -x! -y >

n *n’ Yn7Yq
lx -x!
n'n

= -2 for all n

so 9f 1is not strictly submonotone.
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Iv. Lower—C1 functions

In this section, we characterize the class of "lower-Cl

functions” in terms of their Clarke gradients. £ : R® > R is
lower-Cl provided £ can be represented locally as f(x) = max g(x,s).,
sSeS

where S is compact and g and ng are continuous jointly in x
and s. In Theorem 4.9, it is demonstrated that a locally Lip-
schitz £ 1is lower-Cl if, and only if, 3f is strictly submonotone.
The term "lower-Cl function” was suggested to us by Professor

R. T. Rockafellar.

(4.1) LEMA. Let £ : R* >R be locally Lipschitz, x,y ¢ rR". For every

€ > 0, there are neighborhoods U of x and V of y such that if

* *
Xx'eU and v' ¢V, then lwaf(x,)(y) - Wéf(x.)(y')l < €.

Proof. Let Kk be a Lipschitz constant for £ on a neighborhood
U of x. Then 3f(x') «xB for all x'e U, and it follows that «

*
is a (global) Lipschitz constant for Waf(x')(.)‘ Take V to be

the open ball of radius €/x centered at y. &

(4.2) LEMMA. Let £ : R® > R be locally Lipschitz. Then

. . fF(x'+ty) - £(x'") _ * n
(4.3) 1;r?»;nf c ‘*’af(x')(y) > 0, Yy € R

ti0
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if, and only if, for any compact Kc Rn, and any ¢ > 0, there is

a neighborhood U of x and A > 0 such that

flx'+ty') - £(x") _ ,* o> -
(4.4) £ Waf(x')(y ) z -¢€

whenever x'e U, v' e K, 0 < t < A.

Proof. Assume 4.3 holds, and fix Kc:Rn and ¢ > 0. Since f 1is

locally Lipschitz, 4.3 implies

L f(x'+ty') - f(x") * - n
lim inf - Y Ly 20, Vyer' .
2 lox t 3F(x")

y'-y

t+0

This, and Lemma 4.1, imply that for each y ¢ X we may find neighboi-

hoods U of x, V. of y, and X _ > 0 such that
Y Y Y
* *x .
Yarx) )~ Yap(x) ¥") 2 -e/2

and

f(x'+ty') - £(x') _ ,* -
- Waf(x,)(y) > ~g/2

whenever x' ¢ Uy’ y'eV , and 0 < t < Ay. Pick a finite subcover

1

V. e,V for X, and let U
Y Ym Y1 m ¥y

For any x'eU, y'eK, and te (0,)), let i be such that y'e¢ Vy Y
i
and we get

U ne++ n UY and A = min{A,_ ,**°,A

4

m




f(x'+ty') - £ix') _ * ot
e Yog(xr) (W)
_ [f(x"+ty') - £(x")Y % L * ot ,
= < £ Yorxn) W) * War) Vi) = Yapxn) V1)
s -e/2 - €/2 = - ,
as desired. The opposite direction of the lemma is obvious. E

(4.5) PROPOSITION. If f : R" » R is locally Lirochitz, then

of is strictly submonotone at x 1if, and only if, 4.3 holds.

Proof. (=>) If y = 0, the assertion is trivial. Without any
loss Of generality, we may assume that lyl = 1. Fix & > 0.

Since 3f is strictly submonotone at x, there is r > 0 such thet

XXy Y TV,

> -¢
]xl—x2]
whenever Ixi - x| < 2r, y; € 3f(x;) for i = 1,2, and x; # x,.
Let x' and t be chosen so that |[x' - x| < r and 0 < t < r. We

will complete the proof by showing that

f(x'+ty) - £(x') _ ,* .
£ Yop(xry ¥) 2 -«

Choose any Y, € 3f(x')y. By the mean-value theorem of Lebourg [31],
we may find se (0,t) and Y, € df (x'+sy) such that f(x'+ty) - £(x') =

t<y,y2>. Letting Xy = x' and X, = x' + sy, we have
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f(x'+ty) - £(x") _ * _ _
- Yar(x) Y) = <¥iyymyy2
_ <X2‘Xl,y2-yl> . e
ETSN
(<=) Next, suppose 4.3 holds, and let € > 0 be given. By Lemma

4.2, there is a neighborhood U of x and A

>

0 such that

f(x'+tu) - f£(x') * _
£ Waf(x')(u) > -g/2
whenever x' e U, Ju] =1, and 0 < t < A. We may also assume that
U is small enough so that |z - z'| < A for all z, z'e¢U. Fix
s . =' _ !
X, €U, y e af(xi) for i=1,2, with xq # X, Let.t 1%, X |
and u = (xz - Xl)/t’ Then
S A A £ ke
1 2 1 2 = =-<u,v.> ~ <-u,y.>
le—xzi <1 2
* *
2 Vopx) (W 7 Yap(x) (W
1 2
) f(xl+tu) - f(xl) ) w* -
t Bf(xl)
£(x -tu) - £(x;) o
* t B ‘af(xz)(—u)
3 € _ _
2T 2T T
which shows that 3f is strictly submonotone at x. 8
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.6) LEMMA. Let f : R - R be locally Lipschitz, let C and X
compact sets in Rn, and suppose that 3f is strictly submonotone
C. Then

— - *
1im inf f(x+ty) f(x) _ y () 0
t 3f (x)
xeC
yekK
tv0

Proof. Let ¢ > 0 be given. By Proposition 4.5 and Lemma 4.2,

for each xe¢ C, there is Ax > 0 such that

f(x'"+ty) - £(x") *

€ T Y W) 2 e
whenever |x' - x| < A_, y<K, and 0 < t < A_. Let x,,***,Xx_cC
X X 1 r

be

such that for every xe¢ C we have |x - xi] < Xx for some 1i.
i

Let A = min(xX ,---,Ax ). Then for any xe¢C, ye K, we have

1 r

£(x+ty) = £(x) _ * )
£ Yap(x) ¥Y) 2 €

whenever 0 < t < A. B

(4.7) LEMMA. Let ¢4(t) be real-valued, defined for t > 0 suffi-
ciently small, such that lim ¢(t) = 0. Then there is a continu-
t+0

ously differentiable function a(t) defined on [0,a] for some

a > 0 such that
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a(0) = a'(0) = 0

I

a(t)

v

to(t), Vte (0,a]

Proof. Let a > 0 be such that ¢ is bounded above on (0,2a],
and let a, = a/2, k=0,1,+++ . If 8 is the infimum of all affine
functions & : R » R which satisfy z(ak) 2 ¢(t) for all te (O,2ak]

and all k=0,1,2,-++ then the following properties are easily

checked:

8 is continuous, concave, nondecreasing on [0,a]
B(O) =0
B =2 ¢ on (0,al

B is affine on [ak+l'ak]’ k=0,1,2,¢--
Also, 8;, the right derivative of B has these properties:

8; is finite, nonnegative, and nonincreasing on (0,a)
8; is constant on [ak+l’ak)' k=0,1,2,°-"

8; is integrable on [0,al].
This last assertion is proven as foliows. Whenever 0 < u < v < a,
v
B(v) - B(u) = [ B, (s) ds
. u

{cf. Rockafellar [6, 24.2.1)). Since B; 2z 0 and R is continucus,
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a v :
J 8)(s) ds = lim [ B1(s) ds = B(a) - B(0) < =,
0 u+0 u
v+a
t
so 8 is integrable. Note that since 8(0) = 0, B8(t) = [ 8! (s) ds
0

for all te [0,al.

For each k=1,2,++-+, pick ck such that

1
Flag ¥ ap ) <o <a

(ap = e ) (Bilap ) - 81(a)) < apy -

Define u : (0,a) - R to be the function that agrees with 1 + B;
on the intervals [ak+l’ck] {k=1,2,+-+) and on [al,ao), and 1is
affine on the intervals [ck,ak] (k=1,2,+++). Then pu is continuous,

nonnegative, and nonincreasing on (0,a) and

t
/ u(s) - Bi(s) ds 2 0 for all k=0,1,2,+--,
a
k+1
telag, ;3]
Since 0 < yu < s; + 1 and 8; is integrable, it foll- that pu is

integrable. Then for all te [0,a],

t t
[ u(s) ds 2 [ B'(s) ds = B(t)
0 o*

t
Define a(t) = tf u(s) ds for all te [0,a]. Clearly,
0
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a 1s continuously differentiable on (0,al.

a(0) =0

v

a{t) to(t) for te (0,a] .

It remains only to show that ¢ is continuously differentiable at

t
0. We have a'(0) = lim 9‘—({__'51 = lim [ u(s) ds = 0. Also, for t > O,
t>0* t+0 O
t
a'(t) = [ u(s) ds + tp(t)
0
t
= [ (u(s) + u(t)) ds
0 ;
t
< 2f u(s) ds (since u 1s nondecreasing)
0
so lim a'(t) = 0. W
t>0
n

(4.8) PROPOSITION. Let £ : R® - R be locally Lipschitz. If

of is strictly submonotone then for every compact Cc Rn, there

is a continuously differentiable o : [0,a] > R such that

a(0) = a'(0) = 0 and

*

f£(x + ty) 2 f£(x) + t?af(x)(y) - a(t)

whenever xe¢C, |y| =1, and 0 < t < a.
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Proof. For t > 0, define
S _ *
¢$(t) = - inf min (E(X+t y%1 £0a) waf(“‘(y)’ 0)
t'<t \ ~
xeC
lyl=1

Then ¢ > 0 and by Lemma 4.6, lim ¢(t) = G. By Lemma 4.7, there
t+0

is a real-valued function a(t) which is continuously differen-

tiable on [0,a] for some a > 0 such that a«(0) = a'(0) = 0 and
a(t) 2 tod(t) for all te (0,a). It follows that f(x + ty) 2z £(x) +

*
twaf(x)(y) - a(t) whenever xc¢C, |y| =1 and 0 < t s a= @

(4.9) THEOREM. Let f : R" + R be locally Lipschitz. df is

strictly submonotone if, and only if, for every X e R” there is

a neighborhood U of X, a compact set S and a continuous function

g : U x 5 » R such that ng(x,s) exists and is continuous in

{x,s) and such that

f(x) = max g(x,s) VxeU .
seS
Proof. (=>) Suppose 3f is strictly submonotone, and fix X e R™.
By Froposition 4.8, there is a > 0, and a Cl function o : [0,a] + R
such that a(0) = a'(0) = J and

£f(x+y) = £(x) + <z,y> - a(ly])
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whenever |x-x| s 1, |y| < a, and 7 e 3f(x). Let b = min{l,a/2}.
Then
f(x) 2 £(x') + <x-x',.> - a(|x-x'])
whenever |x-x| < b, |x'-x| < b, and e 3f(x'). Let U =
{x : [x-x| < b} and S = {(x',5) : |x'-x| < b, gedf(x")}. If

we define
g(x,x',z) = £(x") + <x-x',z> - a(|x-x'[),
then g has the desired properties. -

(=>) Fix X e Rn, let U, S, and g be as indicated, and let

Kc U be a compact convex neighborhood of X. By compactness,

ng(x,s) is uniformly continuous on K x S. So, defining for t >
n(t; = sup ]ng(z,s) - ng(z',s)l
z,2'ek
SeS

|z-2z"| st

we have lim n(t) = 0. By Lemma 4.7 there is, for some a > 0,
t+0

a Cl function a : [0,a] - R such that a(0) = a'(0) = 0 and

a(t) 2 tn(t) for all te (0,aj.
Fix x, x' e K such that x # x'. For each se¢ S, by the mean-
value theorem, there is x" ¢ K on the line segment (x,x') such

that g(x',s) - g(x,s) = (x' - x)-ng(x",s). Then
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[g(x',s) - glx,s) - (x'-x)-9 g(x,s)]/[x" - x|

= “,s) - X - x
= (ng(x ,S) ng(xls)) ‘X, — X[
' = x|
2 -n(]x" - x[) 2 -n(]x' - x[) 2 - a(1§' - ill
Hence, for all se¢ S,
g(x',s) 2 g(x,s) + (x' - x)'ng(x,s) - a(|x' - x|)

Let ¢ e 3f(x) be arbitrary. By Clarke [1, Theorem 2.1], we may

find sl,---,ske S and numbers Al,---,kk such that
g = LAV, 9(x,s;)
= = ¥
A 2 0, Exi 1, g(x,si) £(x)
Then

fi{x"')

v

Pr.g(x',s,)

v

Zki(g(x,si) + (x -x)-ng(x,si) -

a(]x'-x|))

£(x) + (x'-x)+C - a(]|x'-x])
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Since this holds for all £ ¢ £f(x), we have shown that for all

X, X' e K with x # x', we have

*

f(x') = f(x) + Waf(x)(x' - x) - allx" - x|) .

It then follows easily by Lemma 4.5 that 3f 1is strictly submono-

tone at every interior point of K, and hence in particular at x.
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